High load, high accuracy positioning

This GRC Series table rotary actuator enables direct installation of high loads and realizes high positioning accuracy using bearing guides.

Excellent design freedom

- Introducing the industry's smalest torave Sxinenvoroues ate now wanabese:
$5,10,20,30,50$ and 80.
Select the standard or High precision type with the same dimensions.
The product type, such as the line, is quickly changed between the standard and High precision type.
Basic type
Radial bearings realize stable
Reration
Cross roller bearings realize
high accuracy and high load

Available with either 90° specifications or 180° specifications
Further downsizing is possible by selecting the 90° oscillation angle.
GRC series variation

	Basic type GRC	High precision type GRC-K
With switch		
Torque (torque value when 0.5MPa)		
$5(0.5 \mathrm{~N} \cdot \mathrm{~m})$		-
$10(1.0 \mathrm{~N} \cdot \mathrm{~m})$		
$20(2.0 \mathrm{~N} \cdot \mathrm{~m})$		
$30(3.0 \mathrm{~N} \cdot \mathrm{~m})$		
$50(5.2 \mathrm{~N} \cdot \mathrm{~m})$		
$80(8.1 \mathrm{~N} \cdot \mathrm{~m})$		
Oscillating angle		
90° type		
180° type		

TABLE TYPE ROTARY ACTUATOR
Rack and pinion type

© : Option
○ : Custom order
\triangle : Available depending on conditions (Consult with CKD)
: Not available

Safety Precautions

Always read this section before starting use.
Refer to page 2 for general details on the cylinder, and to page 230 for details on the cylinder switch.

SCPD2

Design \& Selection

-Generally, the higher the air pressure, the smaller the load result in more stable operation.
Use a load at 50% or less.
OOperation will stabilize if speed is controlled at the meterout circuit.

PUSH : Meter out
PULL : Meter out
-Avoid use with vibration.
The product will be adversely affected by vibration and operation will become unstable.

Installation \& Adjustment

A
 CAUTION

1 Do not further machine the product.
If so, strength will decrease and could lead to product damage. This may result in injury or damage to operator, component, or equipment.

2 Do not increase the fixed orifice on the piping port by remachining, etc., or actuator operation speed and impact will increase, damaging the actuator. Install a flow control valve on piping, etc.

3 The piping port is selectable from 3 sides. Ports other than the side piping port are plugged when the product is shipped. When changing the piping port, interchange these plugs. When changing ports for the GRC-5 to 30, apply the recommended adhesive to plugs. When changing ports for GRC50 or 80, apply recommended adhesive or wrap sealing tape around plugs. Failure to do so may lead to air leakage.
<Recommended adhesive>
LOCTITE 222 : Japan LOCTITE
Three Bond 1334 : Three Bond

4 The relationship of piping ports and oscillation direction is shown below.

R: Clockwise rotation (right rotation)
L: Counterclockwise rotation (left rotation)
5 An angle adjustment screw (stopper bolt) for adjustment of oscillation angle is provided as a standard. When the product is shipped, the angle adjustment screw is adjusted randomly within the oscillation adjustment range. Readjust this to the required angle before use.

6 Adjust the angle to within the adjustment range specified for the product.
If the angle is adjusted outside the adjustment range, the product could be damaged. Refer to product specifications (page 206) and oscillation angle adjustment (page 227).

Pneumatic Components

Safety Precautions

Always read this section before starting use.
Refer to page 2 for general details on the cylinder, and to page 230 for details on the cylinder switch.

Table type actuator GRC series

CAUTION
7 The adjustment angle per rotation of the angle adjusting screw (stopper bolt) is shown below.
Table 1

Size	Adjustment angle per stopper bolt rotation
5	8.7°
10	4.9°
20	5.7°
30	3.8°
50	3.5°
80	3.5°

8 Observe steps (1) to (5) when adjusting the angle. If the angle is not adjusted this way, the seal washer may break after one or two adjustments.
Angle adjustment procedures:
(1)First loosen the hexagon nut as shown in Fig. 1.
(2)Separate the seal washer from the head cover as shown in Fig. 2.
(3)Turn the stopper bolt, hexagon nut, and seal washer together as shown in Fig. 3, and adjust the angle. Check that the rubber section of the seal washer does not bite into the screw.
(4)After adjusting the angle, move the seal washer near the head cover by hand as shown in Fig. 4.
(5)Tighten as shown in Fig. 5 with the hexagon nut. Check that the rubber section of the seal washer does not bite into the screw section.

After adjusting the angle, securely tighten the hexagon nut with the tightening torque in Table 2. Otherwise, the hexagon nut may loosen and cause external leakage in prolonged use

Table 2

Size	Tightening torque (N.m)
5	$5.9 \pm 10 \%$
10	$9.4 \pm 10 \%$
20	$11.8 \pm 10 \%$
30	$11.8 \pm 10 \%$
50	$22.1 \pm 10 \%$
80	$22.1 \pm 10 \%$

9 When replacing the seal washer sealing the angle adjustment stopper bolt, tighten the hexagon nut with the tightening torque in Table 2. Otherwise, air may leak.

10 A rubber cushion is used in the GRC.
(Basic, high precision type) When using at a pressure of 0.3 MPa or less, the rubber cushion may not be pressed down completely. If accuracy is required at the oscillation end, use with a pressure of 0.3 MPa and over.

11 Take care when placing cylinders near each other.
Take care when placing cylinders near each other.
When installing two or more rotary actuators with switches in parallel, or if there is a magnetic substance such as a steel plate nearby, provide the following distances from the cylinder body surface: The dimensions are the same for all size

Failure to do so may cause the switch to malfunction due to mutual magnetic force interference.

Table type rotary actuator Basic type/high precision type

GRC/GRC-K Series

Size: 5/10/20/30/50/80
JIS symbol
Refer to a file list of Ending 74.

Structure and materials restriction

	Structure	Material restriction			Model No.
P7 series	Vacuum treatment				P73
P5 series (Custom order)	Vacuum treatment	Copper-based unacceptable	Silicon-based unacceptable	Halogen-based aunacc-ptable (fluorine, hlorine, oxalic)	P53

Specifications

Note 1: Theoretical torque applies at a working pressure of 0.5 MPa .
Note 2: A working pressure of 0.3 MPa or more is required to press down the rubber cushion incorporated in the basic and high accuracy types.
Note 3: Volumetric capacity applies at the maximum oscillation angle in oscillation angle adjustment.
Note 4: The oscillation angle adjustment range is adjusted with stopper bolts on both sides.
Note 5: The oscillation time adjustment range applies at a working pressure of 0.5 MPa .
Note 6: Table displacement 100 mm from the rotation center is given in Technical Data (Page 225).

Switch specifications

- One color/bi-color indicator

Descriptions		Proximity 2 wire		Proximity 3 wire	
		T2H/T2V	T2YH/T2YV	T3H/T3V	T3YH/T3YV
Applications		Programmable controller		Programmable controller, relay	
Power voltage		-		10 to 28VDC	
Load voltage		10 to 30VDC		30 VDC or less	
Load current		5 to 20mA (Note 1)		100 mA or less	50 mA or less
Light		LED (ON lighting)	Red/green LED (ON lighting)	LED (ON lighting)	Red/green LED (ON lighting)
Note 1: The maximum load current of 20 mA applies at $22^{\circ} \mathrm{C}$. If the switch's ambient operating temperature exceeds $25^{\circ} \mathrm{C}$, the load current becomes less than 20 mA . (5 to 10 mA at $60{ }^{\circ} \mathrm{C}$)					
- With preventive maintenance output					
Descriptions		Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire
		T2YFH/V	T3YFH/V	T2YMH/V	T3YMH/V
Applications		Programmable controller	Programmable controller, relay	Programmable controller	Programmable controller, relay
	Installation position adjustment	Red/green LED (ON lighting)			
	Preventive maintenance output	-		Yellow LED (ON lighting)	
	Current voltage	-	10 V to 28VDC	-	10 V to 28VDC
	Load voltage	10 V to 30VDC	30 VDC or less	10 V to 30VDC	30VDC or less
	Load current	5 to 30 mA	50 mA or less	5 to 20 mA	50 mA or less
	Load voltage	30 VDC or less			
	Load current	20 mA or less	50 mA or less	5 to 20 mA or less	50 mA or less

SCPD2
SCM
MDC2
SMD2
SSD
STS/L
LCS
STR2
MRL2
GRC
Cylinder switch
KBA

Min. oscillating angle when switch is installed
MN4EO

Torque	5	10	20	30	50	80
Ttype proximity/ Type 2 color indicator	20°	15°	17.5°	12.5°	12.5°	12.5°

4GA/B
M4GA/B
MN4GAB
Theoretical torque table
Unit: N•m)

Size	Working pressure (MPa)									
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
5	-	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	-	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
20	-	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
30	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.4	6.0
50	1.0	2.1	3.1	4.1	5.2	6.2	7.3	8.3	9.3	10.4
80	1.6	3.2	4.9	6.5	8.1	9.7	11.3	13.0	14.6	16.2

Product mass
(Unit: kg)

Oscillating angle	90°		180°		Switch mass (Per piece)
Model No.	Basic type	High precision type	Basic type	High precision type	-
GRC- 5	0.39	-	0.43	0.58	
GRC-10	0.48	0.50	0.56	0.90	
GRC-20	0.78	0.80	0.88	1.50	
GRC-30	1.05	1.30	1.25	2.40	
GRC-50	1.80	2.10	2.10	0.02	
GRC-80	2.30	2.60	2.70	3.00	

GRC/GRC-K ${ }_{\text {series }}$

How to order
Without switch

-GRC-5, 10 basic type

- GRC-K-5, 10 high precision type

Section A details

Switch installation position

GRC/GRC-K ${ }_{\text {series }}$

Dimensions (torque 2.0 to $8.0 \mathrm{~N} \cdot \mathrm{~m}$)
Dimensions (torque 2.0 to $8.0 \mathrm{~N} \cdot \mathrm{~m}$)

- GRC-20 to 80 basic type
- GRC-K-20 to 80 high precision type

- GRC-20 to 80 basic type

GRC-K-20 to 80 high precision type

Position of GB differ for GRC-30/GRC-K-30 GRC-30/GRC-K-30

Section A details

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
M5 depth 4 \& 53 \& 16 \& 37 \& 14.5 \& 20.5 \& 27 \& 22 \& 13 \& 86 \& 115 \& 5.6 \& 47 \& 5.8 \& 58 \& 27 H 9 \& 2 \& $11 \mathrm{H9}$ \& 6.5

\hline

M5 depth 4 \& 55 \& 18 \& 37 \& 14.5 \& 20.5 \& 37 \& 22 \& 13 \& 111 \& 155 \& 5.6 \& 57 \& 6.2 \& 68 \& 32 H 9 \& 2 \& $13 \mathrm{H9}$ \& 7.5

\hline

M5 depth 4 \& 71 \& 23 \& 48 \& 21.5 \& 27.5 \& 36 \& 32.5 \& 17.5 \& 129 \& 177 \& 8.1 \& 58 \& 8.5 \& 75 \& 37 H 9 \& 4 \& 14 H 9 \& 10.5 \& 5.3

\hline M5 depth 4 \& 80 \& 25 \& 55 \& 24 \& 30 \& 40 \& 35 \& 19 \& 135 \& 183 \& 8.1 \& 58 \& 12.9 \& 80 \& 40 H 9 \& 3 \& 17 H 9 \& 9.5 \& 4.4

\hline
\end{tabular}

Size	AA	AB	BA		BB	BC	CA		CB	cc	DA	DB	EA	EB	EC	FA	FB	GA		GB	HA	HB	HC
20	$\substack{\text { Men } \\ \text { dent9 }}$	36			42	62			6.9	cen	47	55	17	2	$4_{40.020}^{+0.07}$ depth 4.5	48	64h9	M5 depth 4		M5 depth 4	53	16	37
30		44			52	74			8.7	deat	58	67	21	2	$4_{\text {toio2 }}^{+0.07}$ depth 4.5	59	78h9	M5 depth 4		M5 depth 4	45	18	37
50	epan 13	50	12		60	88			10.5	$\underbrace{\text { M }}_{\substack{\text { dent } \\ \text { deat } 18}}$	66	74	24	2	$5_{50.02}^{+0.07}$ depth 5.5	69	92h9	Rc1/8		M5 depth 4	471	23	48
80		54	(epe $\begin{gathered}\text { M8 } \\ \text { din }\end{gathered}$		66	94			10.5	$\underbrace{}_{\substack{\text { dil } \\ \text { depln 18 }}}$	69	80	26	2	$5^{+0.002}$	76	19	Rc1/8		M5 depth 4	4	25	55
Size	PA	PB	Q	\%			SB	TA		тв	TC		UA		UB		W	X		${ }^{\circ} \mathrm{LD}$	180°	90	
20	20H9	2.5	10	96		25	17	6.1		M10 $\times 1$	5.7		17.6		24		13	13.6		31	37.5	31	37.5
30	$26 \mathrm{H9}$	2.5	10	121		65	25	6.1		M10 $\times 1$	3.8		17.6		34		13	13.6		38.5	49.5	40	49.5
50	28H9	4.5	15	144		92	29.5	7		M12 $\times 1$	3.5		24.6		35		14	20.6		48.5	61	51	61
80	36H9	3.5	15	150		98	29.5	7		M12	3.5		27.1		$36 \quad 6$		14	23.1		51.5	64	54	64

Table type rotary actuator

Fine speed type/high precision fine speed type

GRC-F/GRC-KF series

OSize: 5/10/20/30/50/80
JIS symbol

Structure and materials restriction

	Structure	Model No.
P7 series	Vacuum treatment	P73

Specifications

Descriptions		GRC-F-5	$\begin{aligned} & \text { GRC-F-10 } \\ & \text { GRC-KF-10 } \end{aligned}$	$\begin{aligned} & \text { GRC-F-20 } \\ & \text { GRC-KF-20 } \end{aligned}$	$\begin{aligned} & \text { GRC-F-30 } \\ & \text { GRC-KF-30 } \end{aligned}$	$\begin{gathered} \text { GRC-F-50 } \\ \text { GRC-KF-50 } \end{gathered}$	$\begin{aligned} & \text { GRC-F-80 } \\ & \text { GRC-KF-80 } \end{aligned}$
Size		5	1.0	2.0	3.0	5.0	8.0
Logical torque Note $1 \quad \mathrm{~N} \cdot \mathrm{~m}$		0.5	1.0	2.0	3.0	5.2	8.1
Actuation		Rack \& pinion type					
Working fluid		Compressed air					
Max. working pressure		1.0					
Min. working pressure MPa	Basic type	0.10					
	High precision type	-	0.15			0.10	
Withstanding pressure MPa		1.6					
Ambient temperature ${ }^{\circ} \mathrm{C}$		5 to 60					
Port size		M5					
Relief port size		M5					
Cushion		Rubber cushion					
Allowable energy absorption J		0.005	0.008	0.03		0.04	0.11
Lubrication		No permissible					
Volumetric capacity Note $3 \mathrm{~cm}^{3}$	90° specifications	1.3	3.5	7.0	10.5	18.1	28.3
	180° specifications	2.4	6.6	13.4	20.0	34.4	53.7
Adjustable angle	90° specifications	0° to 100°					
	180° specifications	90° to 190°					
Oscillating time adjusting range $\mathrm{S} / 90^{\circ}$		0.2 to 25					
Table deflection (reference value)	Basic type	$\pm 0.17^{\circ}$			$\pm 0.23{ }^{\circ}$	$\pm 0.26{ }^{\circ}$	$\pm 0.32^{\circ}$
	High precision type	-	$\pm 0.026^{\circ}$				

Note: The oscillation angle adjustment range is adjusted with stopper bolts on both sides.

Switch specifications

One color/bi-color indicator

Descriptions	Proximity 2 wire		Proximity 3 wire	
	T2H/T2V	T2YH/T2YV	T3H/T3V	T3YH/T3YV
Applications	Programmable controller		Programmable controller, relay	
Power voltage	-		10 to 28VDC	
Load voltage	10 to 30VDC		30VDC or less	
Load current	5 to 20mA (Note 1)		100 mA or less	50 mA or less
Light	LED (ON lighting)	Red/green LED (ON lighting)	LED (ON lighting)	Red/green LED (ON lighting)

SCPD2
SCM
MDC2
SMD2
SSD
STS/L
LCS
STR2

Descriptions		Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire
		T2YFH/V	T3YFH/V	T2YMH/V	T3YMH/V
Applications		Programmable controller	Programmable controller, relay	Programmable controller	Programmable controller, relay
$\frac{\stackrel{7}{0}}{\frac{0}{J}}$	Instalation position adiustment	Red/green LED (ON lighting)			
	Preventive maintenance output			Yellow LED (ON lighting)	
	Current voltage	-	10 to 28VDC	-	10 to 28VDC
	Load voltage	10 to 30VDC	30VDC or less	10 to 30VDC	30 VDC or less
	Load current	5 to 30 mA	50 mA or less	5 to 20mA	50 mA or less
	Load voltage	30 VDC or less			
	Load current	20 mA or less	50 mA or less	5 to 20 mA or less	50 mA or less

Note 1: The maximum load current of 20 mA applies at $25^{\circ} \mathrm{C}$. If the switch's ambient operating temperature exceeds $25^{\circ} \mathrm{C}$, the load current becomes less than 20 mA . $\left(5\right.$ to 10 mA at $60^{\circ} \mathrm{C}$)

- With preventive maintenance output
4GA/B

Dimensions
Same as basic type GRC series, high load type GRC-K.Refer to Page 210 to 213.

Selection method

Select the actuator in the following steps:

Step 1. Confirm oscillation time

Actuator operation may be unstable, or the actuator could be damaged if oscillation time is not within specifications. Use within the specified oscillation time adjustment range.

	When using with 90°	When using with 180°
Oscillating time (S)	0.2 to 1.5	0.4 to 3.0

Select size (torque)

There are three sizes categorized by load type.
Calculate required torque for each case. When using a compound load, use the total of each torque as the required torque. See the theoretical torque table or effective torque curve and select a size that satisfies required torque by working pressure.

1. Static load (Ts)

When a static pressing force, such as a clamp, is required
Ts=Fs X L

Ts : Required torque ($\mathrm{N} \cdot \mathrm{m}$)
Fs : Required force (N)
$\mathrm{L} \quad$: Length from center of rotation to pressure cone apex (m)
2. Resistance load (TR)

When frictional force, gravity, or other external force is applied

$$
\mathrm{T}_{\mathrm{R}}=\mathrm{K} \times \mathrm{F}_{\mathrm{R}} \times \mathrm{L}
$$

TR : Required torque (N.m)
K : Slack coefficient [No load fluctuation $\mathrm{K}=2$ Load fluctuates $\mathrm{K}=5$
Fr : Required force (N)
L : Length from center of rotation to pressure cone apex (m)
3. Inertia load (TA)

When rotating an object
TA $=5 \times I X \dot{\omega}$
$\dot{\omega}=\frac{2 \theta}{\mathrm{t}^{2}}$
TA : Required torque (N.m)
I : Moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
$\dot{\omega} \quad$: Angular acceleration $\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
θ : Oscillating angle (rad)
t : Oscillating time (s)
Calculate the moment of inertia with the moment of inertia and oscillation time (page 22) or the moment of inertia calculation diagram (page 223), etc.

Step 3. Confirm allowable energy

When using an inertia load, the actuator could be damaged if the load's kinetic energy exceeds that allowable at the oscillation end. See Table 1, and select so that energy is within that allowable.
If energy is excessive, use an external shock killer, etc., to stop the load.

$$
\begin{aligned}
& \mathrm{E}=\frac{1}{2} \times I \times \omega^{2} \\
& \omega=\frac{2 \theta}{\mathrm{t}}
\end{aligned}
$$

E : Kinetic energy (J)
I : Moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
ω : Angular speed (rad/s)
θ : Oscillating angle (rad)
t : Oscillating time (s)
Calculate the moment of inertia with the moment of inertia and oscillation time (page 222) or the moment of inertia calculation diagram (page 223), etc.

Selection guide: Selection method

Selection method

Step 4. Confirm allowable load

When the load is directly applied on the table, check that the load is within that allowable in Table 2.
When using a compound load, check that the total rate for each allowable load is 1.0 or less.
There are three types of loads.
(1)Thrust load (axial load)

(2)Radial load (sideways load)

Allowable energy absorption and that allowable for each load are shown below.

Table 1 Allowable energy absorption value

Size						20	30	50	80
Basic type/high precision type		0.0				0.03		0.04	0.11
Table 2 Allowable load values					$W_{\text {Smax }}$		$W_{\text {Rmax }}$	$M_{\text {max }}$	
Size			5		10	20	30	50	80
Thrust load Wsmax [N]	Basic type			50	80	140	200	450	580
	Highprecisiont tpe				120	220	440	550	650
Radial load WRmax [N]	Basic type			30	80	150	200	320	400
	High precision tpe				100	160	240	380	480
Moment load Mmax [$\mathrm{N} \cdot \mathrm{m}$]	Basic type		1.	. 5	2.5	4.0	5.5	10.0	13.0
	Highprecisiontrpe		-		3.0	5.0	7.0	12.0	15.0

SCPD2
[J]
MDC2
SMD2
SSD
STS/L
LCS

Selection example (1)

When the load is a rectangular parallelepiped

<Operational conditions >

Pressure	$: 0.5(\mathrm{MPa})$
Oscillating angle	$: 90^{\circ}$
Oscillating time	$: 0.6(\mathrm{~s})$
Load (material	$:$ Aluminum alloy)
<Rectangular parallelepiped $>: 0.5(\mathrm{~kg})$	

Step 1. Confirm oscillation time

Based on operation conditions, the oscillation time is $0.6\left(\mathrm{~s} / 90^{\circ}\right)$. This is within the oscillation time adjustment range 0.2 to $1.5(\mathrm{~s} /$ 90°). GO to the next step.

Step 2. Select the size

Since the load is an inertia load, calculate the moment of inertia (L) first.
<Rectangular parallelepiped >
$\mathrm{I}=0.5 \times \frac{0.06^{2}}{6}=3 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Next, calculate the angle acceleration ($\dot{\omega}$).
Based on the conditions, $\theta=90^{\circ}=\frac{\pi}{2}(\mathrm{rad}), \mathrm{t}=0.6$ (s$)$
Thus,
$\dot{\omega}=\frac{2 \theta}{\mathrm{t}^{2}}=\frac{\pi}{0.6^{2}}=8.73\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
Therefore, baased on (1) and (2), the inertia load (T_{A}) is:
$T_{A}=5 \times 3 \times 10^{-4} \times 8.73$
$=0.0131(\mathrm{~N} \cdot \mathrm{~m})$ \qquad
Based on the value from (3), the operation conditions, and the torque for $0.5(\mathrm{MPa})$,
GRC-5-90 (A)
is selected.

Step 3. Confirm the allowable energy

Calculate the kinetic energy and confirm that it is within the allowable energy value.

Calculate the average angle speed ω.
Based on the conditions, $\theta=90^{\circ}=\frac{\pi}{2}(\mathrm{rad}), \mathrm{t}=0.6$ (s)
Thus,
$\omega=\frac{2 \theta}{\mathrm{t}}=\frac{\pi}{0.6}=5.24(\mathrm{rad} / \mathrm{s})$
Therefore, the kinetic energy (E) is:

$$
\begin{align*}
E & =\frac{1}{2} \times 3 \times 10^{-4} \times 5.24^{2} \\
& =0.00412(\mathrm{~J}) \tag{4}
\end{align*}
$$

Based on the value from (4), and (A) selected in Step 2 GRC-5-90 (B)
is selected.

Step 4. Confirm the allowable load

Finally, calculate the load value applied on the table, and confirm that it is within the allowable load value.
<Thrust load>
The thrust load (Ws) is:

$$
\begin{equation*}
\mathrm{Ws}=0.5 \times 9.8=4.9(\mathrm{~N}) \tag{5}
\end{equation*}
$$

<Radial load>
The radial load is not applied, so:

$$
\begin{equation*}
W_{R}=0(N) \tag{6}
\end{equation*}
$$

<Moment load>
The moment load is not applied, so:

$$
\mathrm{M}=0(\mathrm{~N} \cdot \mathrm{~m}) \cdots \cdots \cdots \cdots \cdot(7)
$$

Based on (5), (6), (7) and (B)

$$
\begin{equation*}
=\frac{4.9}{50}+\frac{0}{30}+\frac{0}{1.5}=0.098 \leqq 1.0 \tag{C}
\end{equation*}
$$

Based on (B) and (C), the total load value is within the allowable load value, so

GRC-5-90

is selected.

Selection guide: Selection example

Selection example (2)

When rotary shaft is horizontal and load is rectangular plate

(Distance from center of rotation to center of rectangular plate load)
<Operating conditions >

Pressure	: 0.5 (MPa)
Oscillating angle	: 180°
Oscillating time	: 2.0 (s)
Load (Material: Aluminum alloy)	
<Rectangle p	
<Rectangula	arallelepipe

Step 1. Confirm the oscillation time

Based on the operation conditions, the oscillation time is 2.0 ($\mathrm{s} / 180^{\circ}$). This is within the oscillation time adjustment range 0.4 to $3.0\left(\mathrm{~s} / 180^{\circ}\right)$, so go to the next step.

Step 2. Select the size

Resistance and inertia loads are generated by gravity, so calculate the resistance load (TR) and moment of inertia (I).
<Resistance load >
The resistance load varies with table rotation.
$\mathrm{F}_{\mathrm{R}}=0.2 \times 9.8=1.96(\mathrm{~N})$
$R=0.105$ (m)
Thus,
$T_{R=5} \times 1.96 \times 0.105=1.03(\mathrm{~N} \cdot \mathrm{~m})$
<Inertia load>
[Rectangular plate]
$\mathrm{I}_{1}=0.2 \times \frac{0.15^{2}}{12}+0.2 \times 0.105^{2}$

$$
=2.58 \times 10^{-3}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
$$

[Rectangular parallelepiped section]
$\mathrm{I}_{2}=0.5 \times \frac{0.06^{2}}{6}=3 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
The entire moment of inertia (I) is as follows:

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=2.88 \times 10^{-3}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)
$$

\qquad
Next, calculate the angle acceleration ($\dot{\omega}$)
Based on conditions, $\theta=180^{\circ}=\pi(\mathrm{rad})$ and $\mathrm{t}=2.0$ (s).

Thus,
$\dot{\omega}=\frac{2 \theta}{\mathrm{t}^{2}}=\frac{2 \pi}{2.0^{2}}=1.57\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
Therefore, based on 2 and 3, inertia load (T_{A}) is:
$\mathrm{T}_{\mathrm{A}}=5 \times 2.88 \times 10^{-3} \times 1.57$
$=0.023(\mathrm{~N} \cdot \mathrm{~m})$
Based on (1) and (4), total torque (T) is:
$\mathrm{T}=1.03+0.023=1.05(\mathrm{~N} \cdot \mathrm{~m})$
Based on the value from (5), operation conditions, and the torque for 0.5 MPa ,
GRC-20-180
(A)
is selected.
Step 3. Confirm the allowable energy
Calculate kinetic energy and confirm that it is within allowable energy.

Calculate average angle speed ω.
Based on conditions, $\theta=180^{\circ}=\pi(\mathrm{rad})$ and $\mathrm{t}=2.0(\mathrm{~s})$.
Thus,
$\omega=\frac{2 \theta}{\mathrm{t}}=\frac{2 \pi}{2.0}=3.14(\mathrm{rad} / \mathrm{s})$
Therefore, kinetic energy (E) is:
$E=\frac{1}{2} \times 2.88 \times 10^{-3} \times 3.14^{2}$
$=0.014$ (J)
Based on the value from (6), and (A) selected in Step 2

> | GRC-20-180 |
| :--- |

(B)
is selected

Step 4. Confirm the allowable load
Calculate the load applied in the table, and confirm that it is within the allowable load.
<Thrust load>
Thrust load (Ws) is not applied, so the thrust load (Ws) is:

$$
\begin{equation*}
W s=0(N) \tag{7}
\end{equation*}
$$

\qquad
<Radial load>
Total weight is:

$$
0.2+0.5=0.7(\mathrm{~kg})
$$

Thus,

$$
\begin{equation*}
W_{R}=0.7 \times 9.8=6.9(N) \tag{8}
\end{equation*}
$$

\qquad
<Moment load>
Moment load is not applied, so moment load (M) is:

$$
M=0(N \cdot m) \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots(9)
$$

Based on (7), (8), (9), and (B)
$\frac{W_{s}}{W_{\text {smax }}}+\frac{W_{R}}{W_{R \max }}+\frac{M}{M_{\max }}$

$$
\begin{equation*}
=\frac{6.9}{150}+\frac{0}{140}+\frac{0}{4.0}=0.046 \leqq 1.0 \tag{C}
\end{equation*}
$$

Based on (B) and (C), the total load is within the allowable load, so

> GRC-20-180-A1, A2
is selected.
(Module unit)
Clean F.R.

Precision regulator

Flow control
valve
tube

Flow

Valve for
air blow

\begin{abstract}

Abstract

\end{abstract}

SCPD2

