High load, high accuracy positioning

This GRC Series table rotary actuator enables direct installation of high loads and realizes high positioning accuracy using bearing guides.

GRC Series TABLE TYPE ROTARY ACTUATOR

LCS STR2

SCPD2

SCM

MDC2

SMD2

SSD

STS/L

MRL2 GRC

Cylinder switch

KBA

MN4E0

4GA/B

M4GA/B

MN4GA/B

F.R. (Module unit)

Clean F.R. Precision

regulator Pressure/ Differential pressure gauge

Electro pneumatic regulator

Flow control valve

Auxiliary valve

Joint/ tube

Pressure sensor

Flow

Valve for air blow

D 201

Variation/option selection table

- ◎ : Option
- $\bigcirc\$: Custom order
- $\hfill \bigtriangleup$: Available depending on conditions (Consult with CKD)

: Not available

			Clean room s	specifications
			Vacuum treatment	Vacuum treatment
		Symbol	P73	P53
uc	Basic type	Blank	0	0
riati	High precision type	К	O	0
Va	Fine speed type	F	O	
hread	NPT (50,80)	Ν	0	0
Pipe t	G (50,80)	G	0	0
ç	With external shock absorber (1)	A1		
ptic	With external shock absorber (2)	A2		
0	With external shock absorber for later installation	A3		

Pneumatic Components

Safety Precautions

Always read this section before starting use.

Refer to page 2 for general details on the cylinder, and to page 230 for details on the cylinder switch.

Rotary actuator GRC Series

Select the modal so output torque is double or over of torque required by the load.

GRC Series uses a double piston, so if the oscillation angle is adjusted by the stopper bolt, torque at the oscillation end will be half the effective torque.

2 If torque required by the load is small even during oscillation, the actuator could be damaged by load inertia. Consider the load moment of inertia, kinetic energy, and oscillation time, and use at a level below tolerable energy.

3 Precautions for fine speed (GRC-F)

- •Use with oil-free specifications. (Must be oil-free) Features may change if the device is lubricated.
- Assemble the flow control valve near the rotary actuator. If the flow control valve is assembled away from the rotary actuator, oscillation speed will become unstable. Use the SC-M3/M5, SC3W, SCD-M3/M5 or SC3WU Series flow control valve.

Design & Selection

- Generally, the higher the air pressure, the smaller the load result in more stable operation.
 Use a load at 50% or less.
- Operation will stabilize if speed is controlled at the meterout circuit.

PUSH : Meter out PULL : Meter out

Avoid use with vibration.

The product will be adversely affected by vibration and operation will become unstable.

A CAUTION

Installation & Adjustment

1 Do not further machine the product.

If so, strength will decrease and could lead to product damage. This may result in injury or damage to operator, component, or equipment.

- 2 Do not increase the fixed orifice on the piping port by remachining, etc., or actuator operation speed and impact will increase, damaging the actuator. Install a flow control valve on piping, etc.
- The piping port is selectable from 3 sides. Ports other than the side piping port are plugged when the product is shipped. When changing the piping port, interchange these plugs. When changing ports for the GRC-5 to 30, apply the recommended adhesive to plugs. When changing ports for GRC-50 or 80, apply recommended adhesive or wrap sealing tape around plugs. Failure to do so may lead to air leakage. <Recommended adhesive>

LOCTITE 222 : Japan LOCTITE Three Bond 1334 : Three Bond

The relationship of piping ports and oscillation direction is shown below.

R: Clockwise rotation (right rotation) L: Counterclockwise rotation (left rotation)

5 An angle adjustment screw (stopper bolt) for adjustment of oscillation angle is provided as a standard. When the product is shipped, the angle adjustment screw is adjusted randomly within the oscillation adjustment range. Readjust this to the required angle before use.

6 Adjust the angle to within the adjustment range specified for the product.

If the angle is adjusted outside the adjustment range, the product could be damaged. Refer to product specifications (page 206) and oscillation angle adjustment (page 227).

SCPD2

SCM

MDC2

SMD2

SSD

STS/L

LCS

STR2

MRL2

GRC

Cylinder switch

KBA

MN4E0

4GA/B

M4GA/B

MN4GA/B

(Module unit)

Clean F.R. Precision

regulator

Pressure/

Differential pressure gauge

Electro pneumatic regulator

Flow control

valve

Flow sensor

Valve for air blow

Pneumatic Components

Safety Precautions

Always read this section before starting use.

Refer to page 2 for general details on the cylinder, and to page 230 for details on the cylinder switch.

Table type actuator GRC series

The adjustment angle per rotation of the angle adjusting screw (stopper bolt) is shown below.
Table 1

Basic type, high precision type

Size	Adjustment angle per stopper bolt rotation
5	8.7°
10	4.9°
20	5.7°
30	3.8°
50	3.5°
80	3.5°

Seal washer

Head cover

Fig

Stopper bolt

Hexagon nut

8 Observe steps (1) to (5) when adjusting the angle. If the angle is not adjusted this way, the seal washer may break after one or two adjustments.

Angle adjustment procedures: (1)First loosen the hexagon nut as shown in Fig. 1.

- (2)Separate the seal washer from the head cover as shown in Fig. 2.
- (3)Turn the stopper bolt, hexagon nut, and seal washer together as shown in Fig. 3, and adjust the angle. Check that the rubber section of the seal washer does not bite into the screw.
- (4)After adjusting the angle, move the seal washer near the head cover by hand as shown in Fig. 4.
- (5)Tighten as shown in Fig. 5 with the hexagon nut. Check that the rubber section of the seal washer does not bite into the screw section.

^{Fig. 5} After adjusting the angle, securely tighten the hexagon nut with the tightening torque in Table 2. Otherwise, the hexagon nut may loosen and cause external leakage in prolonged use.

Table 2

СКД

Size	Tightening torque (N·m)
5	5.9 ±10%
10	9.4 ±10%
20	11.8 ±10%
30	11.8 ±10%
50	22.1 ±10%
80	22.1 ±10%

Installation & Adjustment

When replacing the seal washer sealing the angle adjustment stopper bolt, tighten the hexagon nut with the tightening torque in Table 2. Otherwise, air may leak.

Basic type, high precision type

10 A rubber cushion is used in the GRC.

(Basic, high precision type) When using at a pressure of 0.3MPa or less, the rubber cushion may not be pressed down completely. If accuracy is required at the oscillation end, use with a pressure of 0.3 MPa and over.

Take care when placing cylinders near each other.Take care when placing cylinders near each other.

When installing two or more rotary actuators with switches in parallel, or if there is a magnetic substance such as a steel plate nearby, provide the following distances from the cylinder body surface: The dimensions are the same for all size

Failure to do so may cause the switch to malfunction due to mutual magnetic force interference.

Caution

Installation & adjustment

1 Joints usable with the relief port are limited, so see the following table.

KBA

Cylinder switch

SCPD2

SCM

MDC2

SMD2

SSD

STS/L

LCS

STR2

MRL2

GRC

MN4E0

4GA/B M4GA/B

									MN4GA/
Descriptions	Port cizo	Port position dimension	V	Vhen there is w	all.	When there is no wall	and 2 color indica	ator switches are used.	FR
Model GRC-5	M5 depth 4	A 4.1	Applicable joint GWS3-M5-S GWS4-M5-S FTS4-M5 FTS6-M5	Joint outer diameter ∳B	Inapplicable joint. GWS6-M5-S GWS*-M5	Applicable joint GWS3-M5-S GWS4-M5-S FTS4-M5 FTS6-M5	Joint outer diameter ∳B ∳ 9 or less	Inapplicable joint. GWS6-M5-S GWS*-M5	(Module uni Clean F.R Precision
GRC-10	M5 depth 3.5	4.1	GWS3-M5-S GWS4-M5-S FTS4-M5 FTS6-M5	φ 8.2 or less	GWS6-M5-S GWS*-M5	GWS3-M5-S GWS4-M5-S GWS6-M5-S GWS4-M5 FTS4-M5 FTS6-M5	¢ 10 or less	GWS6-M5	regulator Pressure/ Differential pressure gauge Electro pneumatic regulator
GRC-20	M5 depth 4	5.8	GWS3-M5-S GWS4-M5-S GWS6-M5-S GWS4-M5 FTS4-M5 FTS6-M5	¢ 11.6 or less	GWS6-M5	GWS3-M5-S GWS4-M5-S GWS6-M5-S GWS4-M5 FTS4-M5 FTS6-M5	φ 11.6 or less	GWS6-M5	Flow control valve Auxiliary valve Joint/ tube
GRC-30	M5 depth 4	6.2	GWS3-M5-S GWS4-M5-S GWS6-M5-S GWS4-M5 FTS4-M5 FTS6-M5	ϕ 12.4 or less (ϕ 10.4 or less)	GWS6-M5	GWS3-M5-S GWS4-M5-S GWS6-M5-S GWS4-M5 FTS4-M5 FTS6-M5	φ 10.4 or less	GWS6-M5	Pressure sensor Flow sensor
GRC-50	M5 depth 4	8.5	GWS3-M5-S GWS4-M5-S GWS6-M5-S GWS4-M5 GWS6-M5 FTS4-M5 FTS6-M5	¢ 17 or less (¢ 13.8 or less)		GWS3-M5-S GWS4-M5-S GWS6-M5-S GWS4-M5 GWS6-M5 FTS4-M5 FTS6-M5	¢ 13.8 or less		air blow
GRC-80	M5 depth 4	12.9	GWS3-M5-S GWS4-M5-S GWS6-M5-S GWS4-M5 GWS6-M5 FTS4-M5 FTS6-M5	 φ 25.8 or less (φ 14 or less) 		GWS3-M5-S GWS4-M5-S GWS6-M5-S GWS4-M5 GWS6-M5 FTS4-M5 FTS6-M5	¢14 or less		

*Dimensions in parentheses in the joint outer diameter column apply when using the two-color indicator switch

*No special limits apply when there is no wall and a one-color indicator switch is used.

Table type rotary actuator Basic type/high precision type

GRC/GRC-K Series

Osize: 5/10/20/30/50/80

JIS symbol

CAD

Refer to a file list of Ending 74.

Structure and materials restriction

	Structure	Material restriction	Model No.
P7 series	Vacuum treatment		P73
P5 series (Custom order)	Vacuum treatment	Copper-based Silicon-based unacceptable Halogen-based (fuorine, chlorine, oxalic)	P53

Specifications

Descriptions		GRC-5	GRC-10 GRC-K-10	GRC-20 GRC-K-20	GRC-30 GRC-K-30	GRC-50 GRC-K-50	GRC-80 GRC-K-80						
Size		5	10	20	50	80							
Logical torque Note 1	N∙m	0.5	1.0 2.0 3.0 5.2										
Actuation		Rack & pinion type											
Working fluid		Compressed air											
Max. working pressure	MPa	1.0											
Min. working pressure Note 2 Basic type		0.10											
MPa High precision type	9	_	0.	15		0.10							
Withstanding pressure	MPa	1.6											
Ambient temperature	°C			0 to 60 (to b	e unfrozen)								
Port size			Ν	15		Rc	1/8						
Relief port size		M5											
Cushion		Rubber cushion											
Allowable energy absorption	J	0.005	0.008	0.	03	0.04	0.11						
Lubrication				Not per	missible								
Volumetric capacity Note 3 cm3	90°	1.3	3.5	7.0	10.5	18.1	28.3						
	180°	3.4	3.4 6.6 13.4 20.0 34.4										
Oscillating angle adjusting range Note 4	90°			0°to	100°								
Coefficiency angle adjusting range	180°			90°to	190°								
Oscillating time adjusting range Note 5	S/90°	0.2 to 1.5											
Table deflection (reference value) Note 6	Basic type		±0.17°		±0.23°	±0.26°	±0.32°						
	High precision type	- ±0.026°											

Note 1: Theoretical torque applies at a working pressure of 0.5 MPa. Note 2: A working pressure of 0.3 MPa or more is required to press down the rubber cushion incorporated in the basic and high accuracy types. Note 3: Volumetric capacity applies at the maximum oscillation angle in oscillation angle adjustment. Note 4: The oscillation angle adjustment range is adjusted with stopper bolts on both sides. Note 5: The oscillation time adjustment range applies at a working pressure of 0.5 MPa. Note 6: Table displacement 100 mm from the rotation center is given in Technical Data (Page 225).

Specifications

M4GA/B

MN4GA/B

Auxiliary valve

Switch specifications

One	color/bi-color indica	ator				SCPD2					
Deeer	intiona	Proxir	nity 2 wire	Proxin	nity 3 wire	0014					
Descr	iptions	T2H/T2V	T2YH/T2YV	T3H/T3V	T3YH/T3YV	SCM					
Appli	cations	Programm	nable controller	Programmable controller, relay							
Powe	er voltage		-	10 to	o 28VDC	MDC2					
Load	voltage	10 te	o 30VDC	30VDC or less							
Load	current	5 to 20	50mA or less	SIVIDZ							
Light		LED (ON lighting)	Red/green LED (ON lighting)	LED (ON lighting)	Red/green LED (ON lighting)	SSD					
Note 1: T	he maximum load curren	rrent of 20 mA applies at 25°C.If the switch's ambient operating temperature exceeds 25°C, the load current becomes less than 20 mA.(5 to 10									
 With 	preventive mainten	ance output				STS/L					
Deser	intiona	Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire						
Desci	iptions	T2YFH/V	T3YFH/V	T2YMH/V	T3YMH/V	LCS					
Appli	cations	Programmable	Programmable	Programmable	Programmable						
		controller	controller, relay	controller	controller, relay	STR2					
ght	Installation position adjustment	Red/green LED (ON lighting)									
Ĺ	Preventive maintenance output		-	Yellow LEI	D (ON lighting)	MRL2					
u rt	Current voltage	-	10V to 28VDC	-	10V to 28VDC	CDC					
ctic Tbr	Load voltage	10V to 30VDC	30VDC or less	10V to 30VDC	30VDC or less	GRC					
Ō %	Load current	5 to 30mA	50mA or less	5 to 20mA	50mA or less	Cylinder					
ntive nance out	Load voltage	30VDC or less									
Preve mainte out	Load current	20mA or less	50mA or less	KBA							
						MN4E0					
Min.	oscillating an	gle when switch is	s installed			4GA/B					

•	•					
Torque	5	10	20	30	50	80
T type proximity/T type 2 color indicator	20°	15°	17.5°	12.5°	12.5°	12.5°

Theoretical torque table

Theoretic	Theoretical torque table (Unit: N·m)															
0:		Working pressure (MPa)														
Size	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0						
5	-	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	Precision regulator					
10	-	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	Pressure/					
20	-	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0	Differential pressure gauge					
30	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.4	6.0	Electro					
50	1.0	2.1	3.1	4.1	5.2	6.2	7.3	8.3	9.3	10.4	regulator					
80	1.6	3.2	4.9	6.5	8.1	9.7	11.3	13.0	14.6	16.2	Flow control					

Product mass	roduct mass										
Oscillating angle	9	0°	18	30°	Switch mass	Pressure					
Model No.	Basic type	High precision type	Basic type	High precision type	(Per piece)	sensor					
GRC- 5	0.39	-	0.43	-		Flow					
GRC-10	0.48	0.50	0.56	0.58		sensor					
GRC-20	0.78	0.80	0.88	0.90	0.02	Valve for air blow					
GRC-30	1.05	1.30	1.25	1.50	0.02						
GRC-50	1.80	2.10	2.10	2.40							
GRC-80	2.30	2.60	2.70	3.00							

Dimensions (torque 0.5, 1.0 N·m)

●GRC-5, 10 basic type • GRC-K-5, 10 high precision type

24.5 30.5 26 30.5

• GRC-5, 10 basic type

• GRC-K-5, 10 high precision type

Dimensions (torque 0.5, 1.0N·m)

8	-¢	_
×		
	4	

Size	AA	AB	BA	В	BBC	CA	СВ	СС	DA	DB	ΕA	EB	EC	FA	FB	GA	GB	HA	ΗB	нс	JA	JB	JC	JD	JE	J 90°	F 180°	JG	JH	JJ	К	MA	MB	NA	NB	NC
5	M4 depth 7	24	M4 depth 6	6.5 26	6 As stated elsewhere	Spot face ø9 depth 5.4	^{1.5} 5.2	M6 depth 12	35	42	11	2 3	^{+0.07} depth 3	.5 36	48h9	M5 depth 4	M5 depth 4	43	13	30	15	18	16	21	11.5	65	82	5.6	29	4.1	42	17H9	2	4H9	5.5	2.4
10	M5 depth 7	30	M5 depth	7 32	2 54	Spot face	6.6	M8 depth 12	40	46	14	2 3	^{+0.07} depth 3	.5 41	54h9	M5 depth 4	M5 depth 3.5	6 46	13	33	15	19	20	21.5	12	75	99	5.6	37	4.1	48	22H9	2	8H9	5.5	2.4
Size	PA	РВ	Q -	90°	▲ 180°	SB	TA	ТВ	тс	;	UA	U	в	V	W	Х	90°	180°	90°	180°																
5	12H9	3.5	8	73	90	14	6.5	M6 X 1	8.7		16.6	1	6	3	10	12.6	21.5	25.5	22.5	25.5																

18H9 2.5 8

83 107

15

4.9

M8 X 0.75

4.9

17.1

19.4

4

11

13.1

GRC/GRC-K Series

Dimensions

CKD

211

Dimensions (torque 2.0 to 8.0N·m)

• GRC-20 to 80 basic type

• GRC-K-20 to 80 high precision type

Cizo	^ ^	۸D	D۸	БΒ	PC	C ^	CР	<u> </u>		РΡ		ΕР	EC		ED	\sim		11.		110	1.4	ID			15	J
Size	AA	AD	DA	ЪΒ	БС	UA UA			DA	υь	EA	сD	EC	FA	ГЬ	GA	GБ	пА	пь	пС	JA	JD	JC	JD	JE	90°
20	M6 depth 9	36	M6 depth 8	42	62	Spot face	6.9	M8 depth 12	47	55	17	2	4 ^{+0.07} _{+0.02} depth 4.5	48	64h9	M5 depth 4	M5 depth 4	53	16	37	14.5	20.5	27	22	13	86
30	M6 depth 9	44	M6 depth 8	52	74	Spot face <i>φ</i> 14 depth 8.6	8.7	M10 depth 15	58	67	21	2	$4_{+0.02}^{+0.07}$ depth 4.5	59	78h9	M5 depth 4	M5 depth 4	55	18	37	14.5	20.5	37	22	13	111
50	M8 depth 13	50	M8 depth 12	60	88	Spot face	10.5	M12 depth 18	66	74	24	2	5 ^{+0.07} _{+0.02} depth 5.5	69	92h9	Rc1/8	M5 depth 4	71	23	48	21.5	27.5	36	32.5	17.5	129
80	M8 depth 13	54	M8 depth 12	66	94	Spot face	10.5	M12 depth 18	69	80	26	2	5 ^{+0.07} _{+0.02} depth 5.5	76	101h9	Rc1/8	M5 depth 4	80	25	55	24	30	40	35	19	135

0:			~	S	A	00	T ^	тр	то	11.0			14/	V	LD		RD	
Size	PA	РВ	Q	90°	180°	58	IA	ТВ		UA	UB	V	٧V	~	90°	180°	90°	180°
20	20H9	2.5	10	96	125	17	6.1	M10 X 1	5.7	17.6	24	5	13	13.6	31	37.5	31	37.5
30	26H9	2.5	10	121	165	25	6.1	M10 X 1	3.8	17.6	34	5	13	13.6	38.5	49.5	40	49.5
50	28H9	4.5	15	144	192	29.5	7	M12 X 1	3.5	24.6	35	6	14	20.6	48.5	61	51	61
80	36H9	3.5	15	150	198	29.5	7	M12 X 1	3.5	27.1	36	6	14	23.1	51.5	64	54	64

212

CKD

GRC/GRC-K Series

Dimensions

Table type rotary actuator Fine speed type/high precision fine speed type **GRC-F/GRC-KF Series**

•Size: 5/10/20/30/50/80

JIS symbol

CAD

Refer to a file list of Ending 74.

Structure and materials restriction

	Structure	Model No.
P7 series	Vacuum treatment	(P73)

Specifications

Descriptions		GRC-F-5	GRC-F-10 GRC-KF-10	GRC-F-20 GRC-KF-20	GRC-F-30 GRC-KF-30	GRC-F-50 GRC-KF-50	GRC-F-80 GRC-KF-80					
Size		5	1.0	2.0	3.0	5.0	8.0					
Logical torque Note 1	N∙m	0.5	1.0	2.0	3.0	5.2	8.1					
Actuation		Rack & pinion type										
Working fluid		Compressed air										
Max. working pressure		1.0										
Min. working pressure MPa	Basic type			0.1	10							
	High precision type	-	0.		0.	10						
Withstanding pressure	MPa	1.6										
Ambient temperature	°C			5 to	60							
Port size			N	15		Rc	1/8					
Relief port size				Μ	15							
Cushion		Rubber cushion										
Allowable energy absorption	n J	0.005	0.008	0.0	0.04	0.11						
Lubrication		No permissible										
Volumetric capacity Note 3	90° specifications	1.3	3.5	7.0	10.5	18.1	28.3					
	180° specifications	2.4	6.6	13.4	20.0	34.4	53.7					
Adjustable angle	90° specifications			0° t	o 100°							
	180° specifications			90° t	o 190°							
Oscillating time adjusting ra	nge S/90°			0.2 t	o 25							
Table deflection (reference value)	Basic type		±0.17°		±0.23°	±0.26°	±0.32°					
	High precision type	-			±0.026°							

Note: The oscillation angle adjustment range is adjusted with stopper bolts on both sides.

Specifications

SCPD2

SCM

MDC2

SMD2

SSD

STS/L

LCS

STR2

Switch specifications

One color/bi-color indicator

Descriptions	Proximi	ty 2 wire	Proximity 3 wire					
Descriptions	T2H/T2V	T2YH/T2YV	T3H/T3V T3YH/T3YV					
Applications	Prograi	mmable	Programmable					
Applications	cont	roller	controller, relay					
Power voltage		-	10 to 2	28VDC				
Load voltage	10 to 3	30VDC	30VDC or less					
Load current	5 to 20m/	A (Note 1)	100mA or less	50mA or less				
Light	LED	Red/green LED	LED	Red/green LED				
Ligin	(ON lighting)	(ON lighting)	(ON lighting)	(ON lighting)				

Note 1: The maximum load current of 20 mA applies at 25°C .If the switch's ambient operating temperature exceeds 25°C , the load current becomes less than 20 mA.(5 to 10mA at 60 °C)

• With preventive maintenance output

Dooo	riptiona	Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire	MDI		
Desc	npuons	T2YFH/V	T3YFH/V	T2YMH/V	T3YMH/V			
Applications		Programmable	Programmable	Programmable	Programmable	GRO		
		controller	controller, relay	controller	controller, relay			
E Installation position adjustment Red/green LED (ON lighting)								
Lig	Preventive maintenance output		-	Yellow LED	(ON lighting)			
4 5	Current voltage	-	10 to 28VDC	-	10 to 28VDC	KBA		
ctio	Load voltage	10 to 30VDC	30VDC or less	10 to 30VDC	30VDC or less			
õ s	Load current	5 to 30mA	50mA or less	5 to 20mA	50mA or less	— MN4		
entive nance out	Load voltage		30VDC	or less		40.4		
Preve mainte outi	Load current	20mA or less	50mA or less	5 to 20mA or less	50mA or less	— 4GA		
						 M4G		

Dimensions

Same as basic type GRC series, high load type GRC-K.Refer to Page 210 to 213.

Precision regulator Pressure/ Differential pressure gauge Electro pneumatic regulator

MN4GA/B

F.R. (Module unit)

Clean F.R.

Flow control valve

Auxiliary valve

Joint/ tube

Pressure

sensor

Flow sensor

Valve for air blow

Selection method

Select the actuator in the following steps:

Step 1. Confirm oscillation time

Actuator operation may be unstable, or the actuator could be damaged if oscillation time is not within specifications. Use within the specified oscillation time adjustment range.

	When using with 90°	When using with 180°
Oscillating time (S)	0.2 to 1.5	0.4 to 3.0

Select size (torque)

There are three sizes categorized by load type.

Calculate required torque for each case. When using a compound load, use the total of each torque as the required torque. See the theoretical torque table or effective torque curve and

select a size that satisfies required torque by working pressure.

1. Static load (Ts)

When a static pressing force, such as a clamp, is required

Ts=Fs X L

- Ts : Required torque (N·m)
- Fs : Required force (N)
- L : Length from center of rotation to pressure cone apex (m)

2. Resistance load (TR)

When frictional force, gravity, or other external force is applied

TR=K X FR X L

- TR : Required torque (N·m)
- K : Slack coefficient [No load fluctuation K=2 Load fluctuates K=5
- FR : Required force (N)
- L : Length from center of rotation to pressure cone apex (m)

- 3. Inertia load (TA)
 - When rotating an object

TA	=5 ΧΙΧ ώ	
<i>.</i>	$=\frac{2\theta}{t^2}$	
TA	: Required to	rque (N⋅m)
1	: Moment of i	nertia (ka.r

- I : Moment of inertia $(kg \cdot m^2)$ $\dot{\omega}$: Angular acceleration (rad/s²)
- θ : Oscillating angle (rad)
- t : Oscillating time (s)
- Calculate the moment of inertia with the moment of inertia

and oscillation time (page 22) or the moment of inertia calculation diagram (page 223), etc.

Step 3. Confirm allowable energy

When using an inertia load, the actuator could be damaged if the load's kinetic energy exceeds that allowable at the oscillation end. See Table 1, and select so that energy is within that allowable.

If energy is excessive, use an external shock killer, etc., to stop the load.

$$E = \frac{1}{2} X I X \omega^{2}$$
$$\omega = \frac{2\theta}{t}$$

E : Kinetic energy (J)

- I : Moment of inertia (kg·m²)
- ω : Angular speed (rad/s)
- θ : Oscillating angle (rad)
- t : Oscillating time (s)

Calculate the moment of inertia with the moment of inertia and oscillation time (page 222) or the moment of inertia calculation diagram (page 223), etc.

GRC Series

Selection guide: Selection method

Selection method

Step 4. Confirm allowable load

When the load is directly applied on the table, check that the load is within that allowable in Table 2.

When using a compound load, check that the total rate for each allowable load is 1.0 or less.

There are three types of loads.

(1)Thrust load (axial load)

(2)Radial load (sideways load)

(3)Moment load

After calculating each load, substitute values in the following expression and confirm the value.

Ws Wsmax +	$\frac{W_R}{W_{Rmax}} + \frac{M}{M_{max}} \le 1.0$
Ws Wr	: Thrust load (N) : Radial load (N)
M Wsmax	: Moment load (N·m)
Wsmax Wrmax Mmax	: Allowable radial load (N) : Allowable moment load (N·m)

Allowable energy absorption and that allowable for each load are shown below.

Table 1 Allow	Table 1 Allowable energy absorption value[J]														
Size			5		0	20		30	50		50		80		01400
Basic type/high precision type O			0.005		800	0.0		3	0.04		0.11		SIVIDZ		
Table 2 Allowable load values W_{Smax} . W_{Rmax} . M_{max}													SSD		
Size			5	5	10	20)	30		50	80		STS/L		
Thrust load	Basic type		Ę	50	80) 14	0	200		150	580				
WSmax [N]	High precis	ion type	-		120) 22	0	440	550		650	_	LCS		
Radial load	Basic	type	type :		80) 15	0	200	320		400	_	0700		
WRmax [N]	High precis	ion type	-		100) 16	0	240		380	480	-	STR2		
Moment load	Basic	type	1	.5	2.5	5 4.	0	5.5	1	0.0	13.0	-	MRI 2		
Mmax [N·m] High precision type		n type –		3.0) 5.	0	7.0	1	2.0	15.0	_				
												-	GPC		

GRC Cylinder switch

SCPD2

KBA

MN4E0

4GA/B

M4GA/B

MN4GA/B

F.R. (Module unit)

Clean F.R.

Precision regulator

Pressure/ Differential pressure gauge Electro pneumatic regulator

Joint/

valve

tube Pressure

sensor

Flow sensor

Valve for air blow

CKD 219

Selection example (1)

When the load is a rectangular parallelepiped

Operational conditions >	
Pressure	: 0.5 (MPa)
Oscillating angle	: 90°
Oscillating time	: 0.6 (s)
Load (material	: Aluminum alloy)
<rectangular parallelepip<="" td=""><td>oed >: 0.5 (kg)</td></rectangular>	oed >: 0.5 (kg)

Step 1. Confirm oscillation time

Based on operation conditions, the oscillation time is $0.6 (s/90^{\circ})$. This is within the oscillation time adjustment range 0.2 to $1.5(s/90^{\circ})$. GO to the next step.

Step 2. Select the size

Since the load is an inertia load, calculate the moment of inertia (L) first.

<Rectangular parallelepiped >

$$I=0.5 X \frac{0.06^2}{6} = 3 X 10^{-4} (\text{kg} \cdot \text{m}^2) \dots (1)$$

Next, calculate the angle acceleration ($\dot{\omega}$).

Based on the conditions,
$$\theta = 90^{\circ} = \frac{\pi}{2}$$
 (rad), t=0.6 (s) Thus,

$$\omega = \frac{2\theta}{t^2} = \frac{\pi}{0.6^2} = 8.73 \text{ (rad/s}^2) \dots (2)$$

Therefore, baased on (1) and (2), the inertia load (TA) is: TA=5 X 3 X 10^{-4} X 8.73

Based on the value from (3), the operation conditions, and the torque for 0.5(MPa),

GRC-5-90 (A)

is selected.

Step 3. Confirm the allowable energy

Calculate the kinetic energy and confirm that it is within the allowable energy value.

Calculate the average angle speed ω .

Based on the conditions, $\theta = 90^{\circ} = \frac{\pi}{2}$ (rad), t=0.6 (s)

Thus,

$$\omega = \frac{2\theta}{t} = \frac{\pi}{0.6} = 5.24 \text{ (rad/s)}$$

Therefore, the kinetic energy (E) is:

$$E = \frac{1}{2} \times 3 \times 10^{-4} \times 5.24^{2}$$

= 0.00412 (J)(4)

Based on the value from (4), and (A) selected in Step 2 GRC-5-90 (B) is selected.

Step 4. Confirm the allowable load

Finally, calculate the load value applied on the table, and confirm that it is within the allowable load value.

<Thrust load > The thrust load (Ws) is: $Ws=0.5 \times 9.8=4.9(N) \dots (5)$ <Radial load> The radial load is not applied, so: $W_R=0(N)\dots (6)$ <Moment load> The moment load is not applied, so: $M=0(N\cdot m)\dots (7)$ Based on (5), (6), (7) and (B)

$$\frac{W_{s}}{W_{smax}} + \frac{W_{R}}{W_{Rmax}} + \frac{M}{M_{max}}$$
$$= \frac{4.9}{50} + \frac{0}{30} + \frac{0}{1.5} = 0.098 \le 1.0 \dots (C)$$

Based on (B) and (C), the total load value is within the allowable load value, so

GRC-5-90

is selected.

(Module unit)

Selection guide: Selection example

Selection example (2)

When rotary shaft is horizontal and load is rectangular plate

Load details

(Distance from center of rotation to center of rectangular plate load)

<Operating conditions >

Pressure : 0.5 (MPa) Oscillating angle : 180° Oscillating time : 2.0 (s) Load (Material: Aluminum alloy) <Rectangle plate > : 0.2 (kg) <Rectangular parallelepiped >: 0.5 (kg)

Step 1. Confirm the oscillation time

Based on the operation conditions, the oscillation time is 2.0 (s/180°). This is within the oscillation time adjustment range 0.4 to 3.0 (s/180°), so go to the next step.

Step 2. Select the size

Resistance and inertia loads are generated by gravity, so calculate the resistance load (TR) and moment of inertia (I). <Resistance load >

The resistance load varies with table rotation. FR=0.2 X 9.8=1.96 (N)

R=0.105 (m)

Thus,

TR=5 X 1.96 X 0.105=1.03(N·m)(1) <Inertia load>

[Rectangular plate]

$$I_1=0.2 \times \frac{0.15^2}{12}$$
+0.2 X 0.105²

 $=2.58 \times 10^{-3} (\text{kg} \cdot \text{m}^2)$

[Rectangular parallelepiped section]

$$l_2=0.5 \times \frac{0.06^2}{6}=3 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$$

The entire moment of inertia (I) is as follows: I=I1+I2=2.88 X 10⁻³ (kg/m²)(2)

Next, calculate the angle acceleration ($\dot{\omega}$) Based on conditions, $\theta = 180^{\circ} = \pi$ (rad) and t=2.0 (s).

	SCPD2
Thus, $2\theta = 2\pi + \pi^2 (1 + 1/2)$ (2)	SCM
$\omega = \frac{1}{t^2} = \frac{1}{2.0^2} = 1.57 \text{ (rad/s}^-\text{)} \dots \dots \dots \dots \dots (3)$ Therefore, based on 2 and 3, inertia load (T _A) is:	MDC2
$T_{A} = 5 \times 2.88 \times 10^{-3} \times 1.57$ = 0.023 (N·m)(4)	SMD2
Based on (1) and (4), total torque (T) is: $T = 1.03 + 0.023 = 1.05(N \cdot m)$ (5)	SSD
Based on the value from (5), operation conditions, and the torque for 0.5 MPa,	STS/L
is selected.	LCS
Step 3. Confirm the allowable energy	STR2
Calculate kinetic energy and confirm that it is within allowable	MRL2
energy. Calculate average angle speed ω .	GRC
Based on conditions, $\theta = 180 = \pi$ (rad) and t=2.0 (s). Thus,	Cylinder switch
$\omega = \frac{2\theta}{t} = \frac{2\pi}{2.0} = 3.14 \text{ (rad/s)}$	KBA
Therefore, kinetic energy (E) is:	MN4E0
$E = \frac{1}{2} X 2.88 X 10^{-3} X 3.14^{2}$	4GA/B
=0.014 (J)	M4GA/B
GRC-20-180 (B)	MN4GA/B

Step 4. Confirm the allowable load

Clean F.R. Calculate the load applied in the table, and confirm that it is Precision within the allowable load. regulator <Thrust load> Pressure/ Differential Thrust load (Ws) is not applied, so the thrust load (Ws) is: pressure gauge $W_{S} = O(N)$ (7) Electro pneumatic regulator <Radial load> Total weight is: Flow control 0.2 + 0.5 = 0.7(kg)valve Thus, Auxiliary $W_R = 0.7 \times 9.8 = 6.9(N) \dots (8)$ valve <Moment load> Joint/ Moment load is not applied, so moment load (M) is: tube $M = O(N \cdot m)$ (9) Pressure Based on (7), (8), (9), and (B) sensor Flow $\frac{W_{s}}{W_{smax}} + \frac{W_{R}}{W_{Rmax}} + \frac{M}{M_{max}}$ sensor Valve for $=\frac{6.9}{150}+\frac{0}{140}+\frac{0}{4.0}=0.046\leq 1.0$ (C) air blow

Based on (B) and (C), the total load is within the allowable load. so

GRC-20-180-A1, A2

is selected.