

ACE

Automation Control Equipment

Auði

Continental

oducts

PHILIPS

2

SI	EM	IEN	IS

chiron

SONY

Rexroth Bosch Group

Dear Reader,

With this slogan we would like to show you our flexibility and the diversity of customized ACE OES MUCH solutions in all product groups. ACE sets the standard for industrial deceleration technology in many areas through an innovative range of catalogue products deliverable from the warehouse that you will find on the following pages. Several of the supplementary product series such as hydraulic dampers without free travel in the HBS series, industrial gas springs of V2A stainless steel or the innovative damping plates SLAB have already made it into the catalogue but represent merely a fraction of our potential.

Talk to our competent sales team regarding the technical notice "upon request". Our service team is pleased to offer different oil fillings, surface treatments, thread sizes, probe characteristics, etc. Developments such as smart shock absorbers, telescopic technology for shock absorbers and gas springs or J-Hook shock absorbers for applications in the furniture area belong to the category "on a project basis".

ACE offers coordinated deceleration systems which can make your engines, machines or facilities more productive, durable, efficient and faster.

Please note the set of ACE throughout the catalogue. It will point out advantages and new products.

ACE-SLAB The Damping Plate

Made of a viscoelastic PUR structure, ACE-SLAB reduces extensive shock loads. The series begins where the vibrations start or an extensive shock reduction is required.

TR-H The Missing TUBUS **Profile Damper**

The new TR-H is the missing link between the nearly linear shock absorbing TS and the progressive TR model. The series, which comprises eleven model sizes, can absorb energy of 2.5 Nm to 282.5 Nm per stroke and dissipate up to 50% of the energy.

The smart shock absorber is living proof of active shock absorption. The controller, which is fitted with sensors, supplies the optimum adjustment to the actuator, which is directly connected with the adjusting sleeve of the classic MAGNUM shock absorber. The concept is available for all MAGNUM model sizes.

Heavy, rotating loads can be safely decelerated in their required final positions with the new telescopic shock absorbers. Through the patented telescopic piston-cylinder principle the shock absorbers can be mounted very close to the pivot and in this way are ideal for installation in large turning units, turn tables, rotary indexing tables and other rotation applications. The telescopic shock absorbers are available in the thread sizes M33 to M64.

All rights to the production, trade names, design and illustrations of this catalogue are reserved. No part of this publication may be reproduced, copied or printed without permission; violations will be prosecuted. Construction, dimensions and specifications of ACE products are subject to change.

Ind	ex	
AGE		
Industrial Shock Absorbers	Industrial shock absorbers are used as hydraulic machine components for slowing down moving loads with minimal reaction force. ACE shock absorbers are characterized by the use of the most recent and innovative technologies such as the piston tube, stretch or rolling diaphragm technique. Thus, the shock absorbers offer the longest service life in high energy absorption.	ACE industrial shock absorbers are machine components that are easy to use and also flexible in use with their multitude of optional accessories.
Safety Shock Absorbers	Safety shock absorbers are used to pro- vide security in emergency stop applications. Auto warehouse units, conveyors, or crane equipment, they are an inexpensive alterna- tive to industrial shock absorbers. Safety shock absorbers are maintenance-free, self- contained and constructed with an integrat- ed positive stop. They feature an integrated diaphragm accumulator or work with a compressed nitrogen bladder. ACE offers	safety shock absorbers with strokes from 15 to 1200 mm. Following model selection we calculate the layout of the damping orifices for your individual requirements.
TUBUS Profile Dampers	The innovative TUBUS profile dampers are a cost-efficient alternative for emergency stop applications. They are made from a special co-polyester elastomer. They con- stantly absorb energies in areas in which other materials fail. The excellent damping characteristics are achieved as a result of the special elastomer material and the world- wide-patented design. The profile dampers are constructed to absorb the emerging	energy with a damping curve that is declin- ing (TA-series), almost linear (TS-series) or progressive (TR-series). The TUBUS series comprises five main types with over 80 indi- vidual models.
SLAB Damping Plates	ACE-SLAB damping plates work using visco-elastic damping of impacts and oscilla- tion and offer constructors new perspectives for the large-scale energy absorption or cus- tomer-specific forms. Thanks to the simple installation using adhesives, they are an ideal solution for many damping requirements, for noise reduction and for the absorption or insulation of vibrations.	The high-tech material made of microcellular polyurethane elastomers is foamed using water in an environmentally safe manner. SLAB damping plates can easily be bonded to other materials, self-adhesive backing films or wearing surfaces, thus enlarging considerably the wide range of application.
Rotary Dampers	The rotary damper is a maintenance-free machine component for controlling rotary or linear motion. ACE rotary dampers ensure a controlled opening and/or closing of small lids, flaps and drawers. The harmonic, soft motion sequence protects sensitive components and increases the quality, value and func- tionality of the product.	
Hydraulic Dampers and Feed Controls	 Hydraulic dampers are infinitely adjustable and provide accurate feed rate control. They are ideal for sawing, grinding and boring machines. Feed controls are used to control traverse rates. They can control the parallel feed in both directions or be used as a compensating element for moving loads. As a 	security element, they prevent the sudden retraction of devices.
Industrial Gas Springs	Gas springs (push type) can be used with all applications in which the lifting and lowering of loads must be controlled. They support manual forces and are used to control the lifting and lowering of lids, flaps, hoods etc. They are maintenance-free, self-contained and deliverable ex stock. Their integral grease chamber provides a lower breakout force, reduced friction and extremely long life.	Industrial traction gas springs are effec- tive in the pulling direction. Both types are fitted with a valve. This allows matching to the required force for any application.

	_				
 Your advantages: Safe and reliable production High service life of the machine Lightweight and low cost construction Low operating costs Quiet and economic machines Low machine load Increased profits 	One piece construction 182 models Long service life Innovative technology New areas of application High-capacity Shortest cycle times Suited for clean room technology Low profile Useful hints	Design, function and calculation Capacity chart MC5 to 600 and SC190 to 925 SC ² -Series and MA30 to 900 Accessories M5 to M25 MAGNUM-Series Air/Oil tanks and installation hints Special shock absorbers CA2 to 4 and A1 1/2 to 3 Installation and application examples	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
 Your advantages: Optimal machine protection Lightweight and low cost construction Maximum traverse paths State-of-the-art damping technology Almost universally applicable Always ready to use 	Small package size Maximum stroke length Customised performance Robust and self-contained	SCS300 to 650 SCS33 to 64 SCS38 to 63 CB63 to 160 Operating instructions Application examples	60 - 61 62 - 65 66 - 69 70 - 73 74 75		
 Your advantages: Inexpensive Small and light construction Space-saving design Production safety Usable with temperatures from -40°C to 90°C Resistant to grease, oils, petrol, microbes, chemicals, sea-water 	Compact design Soft contact characteristics For crane equipment Production safety	TA12 to 116 TS14 to 107 TR29 to 100 TR-H30 to 102 TR-L29 to 188 TC64 to 176 Profile dampers – overview Application examples	76 - 77 78 - 79 80 - 81 82 - 83 84 - 85 86 - 87 88 89	NEW	
 Your advantages: Produced according to a patented formula Produced without use of propellant gas Homogeneous structure and reproducible damping rates Food Industry according 	Large area energy absorption Easy installation Sample sizes ex stock Reduction of vibrations	SLAB SL-030 to SL-300 Adhesive recommendation Chemical resistance and sample sets Application examples SLAB SL-450 to SL-720	90 - 96 97 98 99 100 -101	NEW NEW NEW NEW	
 Your advantages: Maintenance-free and self-contained Safe motion Design-oriented Economical construction Broad range of application Increased value of your product thanks to high component quality 	Miniature Medium-damping torque Compact design Metal body High-damping torque Adjustable Low profile design	FRT-E2 and FRT-G2 FRT/FRN-C2 and -D2 FYN-P1 and FYN-N1 FYN-U1 and FYN-K1 FRT/FRN-K2, FRT/FRN-F2 and FFD FYT/FYN-H1 and -LA3 FDT and FDN Calculations and accessories Application examples	102 -103 104 105 106 107 108 109 110 111		
Your advantages with hydraulic dampers: Sensitive adjustment Immediately deliverable from stock Stick-slip-free Shorter processing times Your advantages with feed controls: Constant speed rates Standard version, ex stock Bi-directional damping Easy to mount 	Precision feed controls Easy to mount Dual feed speed Without free travel Long stroke adjustable damper User-friendly Door dampers	VC25 FA, MA and MVC Application examples DVC HBS-28 to 70 HB-12 to 70 Adjustment instructions HBS/HB TD-28 and TDE-28 Application examples	112 -113 114 -115 115 116 -117 118 -121 122 -128 129 130 131		
 Your advantages: Immediately deliverable from stock with valve Individual filling by valve technology Calculation program for individual design Maintenance-free Extensive range of fittings available 	Fully adjustable Pull type gas springs Suited for clean room technology Easy installation	Function, calculation and mounting tips GS-8 to 70 GZ-19 to 28 Stainless steel gas springs Acc's for gas springs and feed controls Application examples Notes Fax request International distributors	132 -136 137 -145 146 -147 148 -153 154 -157 158 159 -160 161 162-163		

www.acecontrols-int.com

ACE supplies an unbeatable range of products for damping technology. You will find a brief introduction to each product group on the following pages including a selection of features and application examples.

CE

PLEASE NOTE:

not contained in this catalogue, but important for your innovative products:

Special catalogue for ACE-LOCKED clamping elements! Ask for our special catalogue on page 161 and get to know our new products!

ACE Industrial Shock Absorbers

ACE industrial shock absorbers are high quality linear dampers for automatic processes. High performance and solid construction guarantee a long lifespan; including in harsh environments. The absorbers are available in various sizes to slow down masses weighing just a few grams to more than 100 tonnes.

Features

- increase in production
- Iong lifespan of the machine
- simple, inexpensive construction
- quiet, economical machines
- available in Ø 5 mm to 190 mm
- delivery in 24 hours

ACE Safety Shock Absorbers

ACE safety shock absorbers are designed for emergency-stop situations in industrial and crane applications. They are an inexpensive alternative to the industrial shock absorber especially for emergency-stop.

Application examples

- portal cranes
- conveyor systems
- automated storage and retrieval systems
- harbour cranes and bridges

ACE TUBUS Profile Dampers

With the kind permission of Worthmann Maschinenbau GmbH

ACE TUBUS profile dampers are the alternative for applications in which the mass does not have to be stopped in an exact position or the energy does not have to be 100% removed.

Features

- Iow weight
- small installation size
- inexpensive safety element
- simple assembly
- up to 66% energy absorption
- for use in clean rooms

An Unbeatable Range

www.acecontrols-int.com

ACE-SLAB Damping Plates

ACE-SLAB damping plates work using the visco-elastic damping of impacts and oscillation and offer constructors new perspectives for the large-scale energy absorption or customer-specific forms. Thanks to the simple installation using adhesives, they are an ideal solution for many damping requirements, for noise reduction and for the absorption of vibrations.

Features

- produced according to a patented formula
- operating temperature range between
- -30 °C and 70 °C
- large area impact absorption
- the effectiveness of the elastic damping can be determined in advance

ACE Rotary Dampers

ACE rotary dampers ensure controlled rotational movements; either in one direction or in both directions of rotation. Adjustable or fixed control with torques of 0.0001 Nm to 40 Nm available.

Application examples

- photocopier lids
- cassette and CD inserts
- car glove compartments
- fold-away supports or tables (bus and airplane industry)
- furniture industry (drawers and doors)

ACE Hydraulic Dampers and Feed Controls

ACE hydraulic dampers and feed controls help you precisely regulate critical feeds in the wood, plastic, metal and glass industry.

Features

- constant speed
- precise control
- double-sided control
- strokes up to 800 mm
- forces up to 50 000 N
- adjustable
- delivery in 24 hours

ACE Industrial Gas Springs

ACE gas springs support muscle power and help you with the controlled lifting and lowering of lids, hoods, flaps and machine screens

Features

- reduction of the muscle power required
- large forces in small units
- controlled input and output speeds
- controlled movement using just one finger
- increased safety
- adjustable
- delivery in 24 hours

Technical Support

Free Additional Services

With our user-friendly calculation program you can select the right product. It is available on CD or online using the internet. The CAD data is available in all standard formats in 2D and 3D.

On this page we would like to present our **free additional services**. We provide these services to assist you **from identification of the problem to solution**.

Tell us about your requirements. Take advantage of our more than 40 years of expert knowledge in damping technology.

Furthermore:

ACE service support and products are available in more than 40 countries worldwide.

Our specialist engineers create detailed technical solutions for you including assembly suggestions and details on machine loads, brake time and workload etc.

Shock Absorber Function

Virtually all manufacturing processes involve movement of some kind. In production machinery this can involve linear transfers, rotary index motions, fast feeds etc. At some point these motions change direction or come to a stop.

Any moving object possesses kinetic energy as a result of its motion and if the object changes direction or is brought to rest, the dissipation of this kinetic energy can result in destructive impact forces within the structural and operating parts of the machine.

Kinetic energy increases as the square of the speed and the heavier the object, or the faster it travels, the more energy it has. An increase in production rates is only possible by dissipating this kinetic energy smoothly and thereby eliminating destructive deceleration forces.

Older methods of energy absorption such as rubber buffers, springs, hydraulic dashpots and cylinder cushions do not provide this required smooth deceleration characteristic – they are non linear and produce high peak forces at some point during their stroke.

The optimum solution is achieved by an **ACE industrial shock absorber**. This utilises a series of metering orifices spaced throughout its stroke length and provides a **constant linear deceleration** with the lowest possible reaction force in the shortest stopping time.

ACE Controlled Linear Deceleration

ACE demo showing a wine glass dropping free fall 1.3 m. Decelerated by an ACE shock absorber not a drop of wine is spilled.

Stopping with Rubber Buffers, Springs, Dashpots or Cylinder Cushions

Result

- Loss of Production
- Machine Damage
- Increased Maintenance Costs
- Increased Operating Noise
- Higher Machine Construction Costs

Stopping with ACE Shock Absorbers

Your Advantages

- Increased Production
- Increased Operating Life of the Machine
- Improved Machine Efficiency
- Reduced Construction Costs of the Machine
- Reduced Maintenance Costs
- Reduced Noise Pollution
- Reduced Energy Costs

10

Comparison

- **1. Hydraulic Dashpot (High stopping force at start of the stroke).** With only one metering orifice the moving load is abruptly slowed down at the start of the stroke. The braking force rises to a very high peak at the start of the stroke (giving high shock loads) and then falls away rapidly.
- **2. Springs and Rubber Buffers (High stopping forces at end of stroke).** At full compression. Also they store energy rather than dissipating it, causing the load to rebound back again.
- **3.** Air Buffers, Pneumatic Cylinder Cushions (High stopping force at end of stroke). Due to the compressibility of air these have a sharply rising force characteristic towards the end of the stroke. The majority of the energy is absorbed near the end of the stroke.
- **4. ACE Industrial Shock Absorbers (Uniform stopping force through the entire stroke).** The moving load is smoothly and gently brought to rest by a constant resisting force throughout the entire shock absorber stroke. The load is decelerated with the lowest possible force in the shortest possible time eliminating damaging force peaks and shock damage to machines and equipment. This is a linear deceleration force stroke curve and is the curve provided by ACE industrial shock absorbers. In addition they considerably reduce noise pollution.

Reaction Force (Stopping Force)

Stopping Time

Energy Capacity

Stopping Stroke

Force (N)

Stopping Stroke

Assumption:

Same maximum reaction force.

Result:

The ACE shock absorber can absorb considerably more energy (represented by the area under the curve).

Your advantage:

By installing an ACE shock absorber production rates can be more than **doubled without increasing deceleration forces** or reaction forces on the machine.

Assumption:

Same energy absorption (area under the curve).

Result:

The reaction force transmitted by the ACE shock absorber is very much lower.

Your advantage:

By installing the ACE shock absorber the machine wear and maintenance can be drastically reduced.

Assumption: Same energy absorption.

Result:

The ACE shock absorber stops the moving load in a much shorter time.

Your advantage:

By installing an ACE shock absorber cycle times are **reduced giving much higher production rates.**

Comparison of Design

Standard Design of ACE Miniature Shock Absorbers

These miniature shock absorbers have a static pressure chamber. The dynamic piston forces the hydraulic oil to escape through the metering orifices.

The displaced oil is absorbed by the accumulator.

A static seal system containing a U-cup and a wiper seals the shock absorber internally.

The outer body and the pressure chamber are fully machined from solid with closed rear end.

ACE Design for Higher Demands

ACE Piston Tube Technology:

The increased volume of displaced hydraulic oil provides **200% more energy absorption capacity** in comparison with the standard design. The wider effective weight range enables these dampers to cover a much wider range of applications. The piston and inner tube are combined into a single component.

ACE Stretch and Rolling Diaphragm System:

By the proven dynamic ACE rolling diaphragm seal system the shock absorber becomes hermetically sealed and provides **up to 25 million cycles**. The rolling diaphragm seal allows direct installation into the end cover of pneumatic cylinders (up to 7 bar).

These technologies are used separately or combined on the MC150M to MC600M, SC²25M to SC²650M, SCS300 to SCS650 and on the models MC30M-Z and MA150M.

General Function

* The load velocity reduces continuously as you travel through the stroke due to the reduction in the number of metering orifices (*) in action. The internal pressure remains essentially constant and thus the force vs. stroke curve remains linear.

- F = Force (N)
- p = Internal pressure (bar)
- s = Stroke (m)
- t = Deceleration time (s)
- v = Velocity (m/s)

Industrial shock absorbers and automobile braking systems have two crucial functional similarities:

Built-in Safety

- 1. Both should bring a moving mass quickly and safely to rest without any recoil or "bounce back".
- 2. Both must never suddenly fail without warning.

ACE industrial shock absorbers are built to the highest quality. Shock absorber bodies and inner pressure chambers are fully machined from solid high tensile alloy steel. This gives a completely closed end one-piece pressure chamber with no seals or circlips being necessary.

The advantage of this design concept is that the ACE shock absorber is able to withstand much higher internal pressures or overload without damage, giving a very high safety margin. The chance of a sudden failure due to overload etc. is effectively ruled out. Piston Rod high tensile steel hardened and corrosion resistant.

Bearing maintenance-free, self-lubricating and self-retaining.

Seals only one dynamic seal.
 Hermetically sealed rolling diaphragm sealing system.

 Piston Tube with integral piston check valve and metering orifices. Fully machined from solid with closed rear end to withstand internal pressures up to 1000 bar.

 Shock Absorber Body heavy construction massively built one-piece body with closed rear end.
 Fully machined from solid steel to ensure total reliability.

Self-Compensating Industrial Shock Absorbers

are maintenance-free, self-contained hydraulic devices with multiple metering orifices which extend through the complete stroke length.

After the moving load contacts the shock absorber the piston moves back creating an immediate pressure rise in the pressure chamber. The hydraulic oil behind the piston can initially escape through all the metering orifices.

The number of metering orifices in action decreases proportionally to the distance travelled through the stroke.

The impact velocity of the moving load is smoothly reduced. The internal pressure and thus the reaction force (Q) remain essentially constant thoughout the complete stroke length providing a constant deceleration rate or:

Linear Deceleration

ACE shock absorbers provide linear deceleration and are therefore superior to other kinds of damping element. It is easy to calculate around 90 % of applications knowing only the following 5 parameters:

Verwendete Formelzeichen

W ₁	Kinetic energy per cycle	Nm
W_2	Propelling force energy per cycle	Nm
W ₃	Total energy per cycle $(W_1 + W_2)$	Nm
1 ₩ ₄	Total energy per hour $(W_3 \cdot c)$	Nm/hr
me	Effective weight	kg
m	Mass to be decelerated	kg
n	Number of shock absorbers (in parallel)	
² v	Velocity of moving mass	m/s
$^{2}V_{D}$	Impact velocity at shock absorber	m/s
ω	Angular velocity	rads/s
F	Propelling force	Ν
С	Cycles per hour	1/hr
Р	Motor power	kW

 1 All mentioned values of $\rm W_4$ in the capacity charts are only valid for room temperature. There are reduced values at higher temperature ranges.

 2 v or v_D is the final impact velocity of the mass. With accelerating motion the final impact velocity can be 1.5 to 2 times higher than the average. Please take this into account when calculating kinetic energy.

1. Mas 2. Imp 3. Proj 4. Cyc 5. Nun	is to be decelerated (weight) act velocity at shock absorber pelling force les per hour nber of absorbers in parallel	m V _D F c n	(kg) (m/s) (N) (/hr)
³ ST	Stall torque factor (normally 2.5)		1 to 3
М	Propelling torque		Nm
I	Moment of inertia		kgm ²
g	Acceleration due to gravity = 9.81		m/s²
h	Drop height excl. shock absorber stroke		m
S	Shock absorber stroke		m
L/R/r	Radius		m
Q	Reaction force		Ν
μ	Coefficient of friction		
t	Deceleration time		S
а	Deceleration		m/s²
α	Side load angle		0
β	Angle of incline		0

³ ST ≜ relation between starting torque and running torque of the motor (depending on the design)

In all the following examples the choice of shock absorbers made from the capacity chart is based upon the values of (W_3) , (W_4) , (me) and the desired shock absorber stroke (s).

1 Mass without propelling force	Formulae $W_1 = m \cdot v^2 \cdot 0.5$ $W_2 = 0$ $W_3 = W_1 + W_2$ $W_4 = W_3 \cdot c$ $v_D = v$ me = m	Example m = 100 kg v = 1.5 m/s c = 500 /hr s = 0.050 m (chosen)		lm l <u>m</u> l <u>m/h</u> r g
2 Mass with propelling force Image: Constraint of the second s	Formulae $W_1 = m \cdot v^2 \cdot 0.5$ $W_2 = F \cdot s$ $W_3 = W_1 + W_2$ $W_4 = W_3 \cdot c$ $v_D = v$ $me = \frac{2 \cdot W_3}{v_D^2}$ $W_2 = (F - m \cdot g) \cdot s$ $W_2 = (F + m \cdot g) \cdot s$	Example m = 36 kg v = 1.5 m/s F = 400 N c = 1000 /hr s = 0.025 m (chosen)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	im im i <u>m</u> /hr g
3 Mass with motor drive	Formulae $W_1 = m \cdot v^2 \cdot 0.5$ $W_2 = \frac{1000 \cdot P \cdot ST \cdot s}{v}$ $W_3 = W_1 + W_2$ $W_4 = W_3 \cdot c$ $v_D = v$ $me = \frac{2 \cdot W_3}{v_D^2}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		m m <u> m</u> <u>m/h</u> r <u>g</u>
4 Mass on driven rollers	Formulae $W_1 = m \cdot v^2 \cdot 0.5$ $W_2 = m \cdot \mu \cdot g \cdot s$ $W_3 = W_1 + W_2$ $W_4 = W_3 \cdot c$ $v_D = v$ $me = \frac{2 \cdot W_3}{v_D^2}$	Example m = 250 kg v = 1.5 m/s c = 180 /hr (Steel/Steel) $\mu = 0.2$ s = 0.050 m (chosen)		m m <u>m</u> <u>m/h</u> r <u>g</u>
5 Swinging mass with propelling torque	Formulae $W_{1} = m \cdot v^{2} \cdot 0.5 = 0.5 \cdot \cdot \omega^{2}$ $W_{2} = \frac{M \cdot s}{R}$ $W_{3} = W_{1} + W_{2}$ $W_{4} = W_{3} \cdot c$ $v_{D} = \frac{v \cdot R}{L} = \omega \cdot R$ $W_{2} = \frac{2 \cdot W_{3}}{v_{D}^{2}}$			m m <u> m/h</u> r g g

Formulae and Calculations

ACE

14

6 Free falling mass	Formulae $W_1 = m \cdot g \cdot h$ $W_2 = m \cdot g \cdot s$ $W_3 = W_1 + W_2$ $W_4 = W_3 \cdot c$ $v_D = \sqrt{2 \cdot g \cdot h}$ $me = \frac{2 \cdot W_3}{v_D^2}$	Example m = 30 kg h = 0.5 m c = 400 /hr s = 0.050 m (chosen)	$\begin{array}{rcl} W_1 &= 30 \cdot 0.5 \cdot 9.81 &=& 147 & Nm \\ W_2 &= 30 \cdot 9.81 \cdot 0.05 &=& 15 & Nm \\ W_3 &= 147 + 15 &=& 162 & Nm \\ W_4 &= 162 \cdot 400 &=& 64 800 & Nm/h \\ v_D &= \sqrt{2 \cdot 9.81 \cdot 0.5} &=& 3.13 & m/s \\ me &= \frac{2 \cdot 162}{3.13^2} &=& \frac{33 & kg}{3.13} \\ \end{array}$ Chosen from capacity chart: Model MC3350M-1 self-compensating
6.1a propelling force up incline	Formulae $W_{1} = m \cdot g \cdot h = m \cdot v_{D}^{2} \cdot 0.5$ $W_{2} = m \cdot g \cdot \sin\beta \cdot s$ $W_{3} = W_{1} + W_{2}$ $W_{4} = W_{3} \cdot c$ $v_{D} = \sqrt{2 \cdot g \cdot h}$ $me = \frac{2 \cdot W_{3}}{v_{D}^{2}}$ $W_{2} = (F - m \cdot g \cdot \sin\beta) \cdot s$ $W_{2} = (F + m \cdot g \cdot \sin\beta) \cdot s$	6.2 Mass free fa a pivot point Calculation as per example 6.1 except $W_2 = 0$ $W_1 = m \cdot g \cdot h$ $v_D = \sqrt{2 \cdot g \cdot h} \cdot \frac{R}{L}$	Hing about Side load angle from shock absorber axis $a = \frac{S}{R}$ tan $\alpha = \frac{S}{R}$ Check the side load angle, tan $\alpha = s/R$, with regard to "Max. Side Load Angle" in the capacity chart
7 Rotary index table with propelling torque. Note: Formulae given are only valid for circular table with uniform weight distribution.	Formulae $W_{1} = m \cdot v^{2} \cdot 0.25 = 0.5 \cdot I \cdot \omega^{2}$ $W_{2} = \frac{M \cdot s}{R}$ $W_{3} = W_{1} + W_{2}$ $W_{4} = W_{3} \cdot c$ $v_{D} = \frac{v \cdot R}{L} = \omega \cdot R$ $me = \frac{2 \cdot W_{3}}{v_{D}^{2}}$	$\begin{array}{l} \textbf{Example} \\ m &= 1000 \ \text{kg} \\ v &= 1.1 \ \text{m/s} \\ M &= 1000 \ \text{Nm} \\ s &= 0.050 \ \text{m} \ (\text{chosen}) \\ L &= 1.25 \ \text{m} \\ R &= 0.8 \ \text{m} \\ c &= 100 \ /\text{hr} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
8 Swinging arm with propelling torque (uniform weight distribution)	Formulae $W_{1} = m \cdot v^{2} \cdot 0.17 = 0.5 \cdot \cdot \omega^{2}$ $W_{2} = \frac{M \cdot s}{R}$ $W_{3} = W_{1} + W_{2}$ $W_{4} = W_{3} \cdot c$ $V_{D} = \frac{v \cdot R}{L} = \omega \cdot R$ $me = \frac{2 \cdot W_{3}}{v_{D}^{2}}$	$\begin{array}{l} \textbf{Example} \\ \textbf{I} &= 56 kgm^2 \\ \omega &= 1 rad/s \\ \textbf{M} &= 300 Nm \\ \textbf{s} &= 0.025 \ m \ (chosen) \\ \textbf{L} &= 1.5 m \\ \textbf{R} &= 0.8 m \\ \textbf{c} &= 1200 \ /hr \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
9 Swinging arm with propelling force (uniform weight distribution)	Formulae $W_{1} = m \cdot v^{2} \cdot 0.17 = 0.5 \cdot 1 \cdot \omega^{2}$ $W_{2} = \frac{F \cdot r \cdot s}{R} = \frac{M \cdot s}{R}$ $W_{3} = W_{1} + W_{2}$ $W_{4} = W_{3} \cdot c$ $V_{D} = \frac{v \cdot R}{L} = \omega \cdot R$ $me = \frac{2 \cdot W_{3}}{v_{D}^{2}}$	$\begin{array}{l} \textbf{Example} \\ m &= 1000 \ \text{kg} \\ v &= 2 \ \text{m/s} \\ F &= 7000 \ \text{N} \\ M &= 4200 \ \text{Nm} \\ s &= 0.050 \ \text{m} \ (\text{chosen}) \\ r &= 0.6 \ \text{m} \\ R &= 0.8 \ \text{m} \\ L &= 1.2 \ \text{m} \\ c &= 900 \ /\text{hr} \end{array}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
10 Mass lowered at controlled speed	Formulae $W_1 = m \cdot v^2 \cdot 0.5$ $W_2 = m \cdot g \cdot s$ $W_3 = W_1 + W_2$ $W_4 = W_3 \cdot c$ $v_D = v$ $me = \frac{2 \cdot W_3}{v_D^2}$	Example m = 6000 kg v = 1.5 m/s s = 0.305 m (chosen) c = 60 /hr	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Reaction force Q (N) $\mathbf{Q} = \frac{1.5 \cdot \mathbf{W}_3}{\mathbf{s}}$	Stopping time t (s)	$t = \frac{2.6 \cdot s}{v_D}$	Deceleration rate a (m/s ²) $a = \frac{0.75 \cdot v_D^2}{s}$

Approximate values assuming correct adjustment. Add safety margin if necessary.

(Exact values will depend upon actual application data and can be provided on request.)

Formulae and Calculations

15

Note: When using several shock absorbers in parallel, the values (W₃), (W₄) and (me) are divided according to the number of units used.

Effective Weight (me)

The effective weight (me) can either be the same as the actual weight (examples A and C), or it can be an imaginary weight representing a combination of the propelling force or lever action plus the actual weight (examples B and D).

Shock Absorber Capacity Chart

Self-Compensating Shock Absorbers

ACE

Capacit	ty Cha	rt									
		Energy Capacity	Effect	ve Weight				Energy Capacity	Effect	ive Weight	
_	.		Self-Co	mpensating		_	a		Self-Co	ompensating	
Туре	Stroke	W ₃ Nm/Cycle	me min.	me max.	Page	Туре	Stroke	W ₃ Nm/Cycle	me min.	me max.	Page
Part Number			Rg	Ng		Part Number			ĸġ	ĸġ	
MC5M-1-B	4	0.68	0.5	4.4	19	MC4525M-0	25	340	7	27	40
MC5M-2-B	4	0.00	3.0 9.7	10.0	19	MC4525M-1	20	340	20	90 310	40
MC9M-1-B	5	1	0.6	3.2	19	MC4525M-3	25	340	260	1 050	40
MC9M-2-B	5	1	0.8	4.1	19	MC4525M-4	25	340	890	3 540	40
MC10ML-B	5	1.25	0.3	2.7	19	MC4550M-0	50	680	13	54	40
MC10MH-B	5	1.25	0.7	5	19	MC4550M-1	50	680	45	180	40
MC30M-1	8	3.5	0.4	1.9	19	MC4550M-2	50	680	150	620	40
MC30M-2 MC30M-3	8	3.5	1.8	5.4	19	MC4550M-3	50 50	680	520	2 090	40
MC25ML	6	2.8	0.7	2.2	19	MC4575M-0	75	1 020	20	80	40
MC25M	6	2.8	1.8	5.4	19	MC4575M-1	75	1 020	70	270	40
MC25MH	6	2.8	4.6	13.6	19	MC4575M-2	75	1 020	230	930	40
MC75M-1	10	9	0.3	1.1	19	MC4575M-3	75	1 020	790	3 140	40
MC75M-2	10	9	0.9	4.8	19	MC4575M-4	75	1 020	2 650	10 600	40
MC150M	10	20	2.7	30.2 10	21	MC6450M-1	50	1 700	30 140	540	42
MC150MH	12	20	8.6	86	21	MC6450M-1	50	1 700	460	1 850	42
MC150MH2	12	20	70	200	21	MC6450M-3	50	1 700	1 600	6 300	42
MC150MH3	12	20	181	408	21	MC6450M-4	50	1 700	5 300	21 200	42
MC225M	12	41	2.3	25	21	MC64100M-0	100	3 400	70	280	42
MC225MH	12	41	23	230	21	MC64100M-1	100	3 400	270	1 100	42
MC225MH2 MC225MH3	12	41	180	910	21	MC64100M-2 MC64100M-3	100	3 400	930	3 700	42
MC600M	25	136	9	136	21	MC64100M-4	100	3 400	10 600	42 500	42
MC600MH	25	136	113	1130	21	MC64150M-0	150	5 100	100	460	42
MC600MH2	25	136	400	2 300	21	MC64150M-1	150	5 100	410	1 640	42
MC600MH3	25	136	2 177	4 536	21	MC64150M-2	150	5 100	1 390	5 600	42
SC25M-5	8	10	1	5	25	MC64150M-3	150	5 100	4 700	18 800	42
SC25M-6	8	10	4	44	25	MC64150M-4	150	5 100	16 000	63 700	42
SC75M-5	10	16	42	8	25	CA2x2-1	50	3 600	1 800	5 400	53
SC75M-6	10	16	7	78	25	CA2x2-3	50	3 600	4 500	13 600	53
SC75M-7	10	16	75	800	25	CA2x2-4	50	3 600	11 300	34 000	53
SC190M-0	16	25	0.7	4	23	CA2x4-1	102	7 200	1 400	4 400	53
SC190M-1	16	25	1.4	7	23	CA2x4-2	102	7 200	3 600	11 000	53
SC190M-2	16	25	3.6	18	23	CA2x4-3	102	7 200	9 100	27 200	53
SC190M-4	16	25	23	102	23	CA2x4-4	152	10 800	2 2 000	6 500	53
SC190M-5	12	31	2	16	25	CA2x6-2	152	10 800	5 400	16 300	53
SC190M-6	12	31	13	140	25	CA2x6-3	152	10 800	13 600	40 800	53
SC190M-7	12	31	136	1 550	25	CA2x6-4	152	10 800	34 000	102 000	53
SC300M-0	19	33	0.7	4	23	CA2x8-1	203	14 500	2 900	8 700	53
SC300M-1	10	33	1.4	8 27	23	CA2X8-2	203	14 500	1 2 1 0 0	21 700	53
SC300M-3	19	33	4.5	82	23	CA2x8-4	203	14 500	45 300	136 000	53
SC300M-4	19	33	32	204	23	CA2x10-1	254	18 000	3 600	11 000	53
SC300M-5	15	73	11	45	25	CA2x10-2	254	18 000	9 100	27 200	53
SC300M-6	15	73	34	136	25	CA2x10-3	254	18 000	22 600	68 000	53
SC300M-7	15	73	91	181	25	CA2x10-4	254	18 000	56 600	170 000	53
SC300M-8	15	/3	135	680 1 050	25	CA3x5-1	127	14 125	2 900	8 700	54
SC650M-0	25	73	23	1950	23	CA3x5-2	127	14 125	18 100	54,350	54
SC650M-1	25	73	8	45	23	CA3x5-4	127	14 125	45 300	135 900	54
SC650M-2	25	73	23	136	23	CA3x8-1	203	22 600	4 650	13 900	54
SC650M-3	25	73	68	408	23	CA3x8-2	203	22 600	11 600	34 800	54
SC650M-4	25	73	204	1 180	23	CA3x8-3	203	22 600	29 000	87 000	54
SC650M-5	23	210	23	113	25	CA3x8-4	203	22 600	6 950	217 000	54 54
SC650M-7	23	210	320	1 090	25	CA3x12-1	305	33 900	17 400	52 200	54
SC650M-8	23	210	770	2 630	25	CA3x12-3	305	33 900	43 500	130 450	54
SC650M-9	23	210	1 800	6 350	25	CA3x12-4	305	33 900	108 700	326 000	54
SC925M-0	40	110	4.5	29	23	CA4x6-3	152	47 500	3 500	8 600	55
SC925M-1	40	110	14	90	23	CA4x6-5	152	47 500	8 600	18 600	55
SC925M-2	40	110	40	272	23	CA4x6-7	152	47 500	18 600	42 700	55
SC925M-4	40	110	340	2 088	23	CA4x8-5	203	63 300	11 400	25 000	55
MC3325M-0	25	155	3	11	38	CA4x8-7	203	63 300	25 000	57 000	55
MC3325M-1	25	155	9	40	38	CA4x16-3	406	126 500	10 000	23 000	55
MC3325M-2	25	155	30	120	38	CA4x16-5	406	126 500	23 000	50 000	55
MC3325M-3	25	155	100	420	38	CA4x16-7	406	126 500	50 000	115 000	55
MC3325M-4	25	155	350	1 420	38						
MC3350M-0	50	310	5 18	70	30 20						
MC3350M-2	50	310	60	250	38						
MC3350M-3	50	310	210	840	38						
MC3350M-4	50	310	710	2 830	38						

Shock Absorber Capacity Chart

Adjustable Shock Absorbers

Capacity Chart

		Max. Energy	Capacity Nm	Effective		
			Self-Contained	Adju	stable	
Туре	Stroke	W ₃	W ₄	me min.	me max.	Page
Part Number	mm	Nm/Cycle	Nm/h	kg	kg	
MA20M	9	2.5	5 650	0.22	15	27
FA1008VD_B	8	1.8	3 600	0.25	10	21
MASOM	7	5.5	13 550	1.5	20	27
MA35M	10	5.5	6 000	4.5	57	27
MA150M	10	22	35,000	1	109	27
MA100M MA225M	10	25	45 000	23	226	27
MAGOOM	25	68	68 000	Q.	1 360	27
MAGOOM	40	100	90,000	14	2 040	27
MA3325M	25	170	75 000	Q	1 700	38
MI 3325M	25	170	75 000	300	50 000	38
MA3350M	50	340	85 000	13	2 500	38
MI 3350M	50	340	85 000	500	80 000	38
MA4525M	25	390	107 000	40	10 000	40
MI 4525M	25	390	107 000	3 000	110 000	40
MA4550M	50	780	112 000	70	14 500	40
ML4550M	50	780	112 000	5 000	180 000	40
MA4575M	75	1 170	146 000	70	15 000	40
ML6425M	25	1 020	124 000	7 000	300 000	42
MA6450M	50	2 040	146 000	220	50 000	42
ML6450M	50	2 040	146 000	11 000	500 000	42
MA64100M	100	4 080	192 000	270	52 000	42
MA64150M	150	6 120	248 000	330	80 000	42
A11/2x2	50	2 350	362 000	195	32 000	52
A11/2x31/2	89	4 150	633 000	218	36 000	52
A11/2x5	127	5 900	904 000	227	41 000	52
A11/2x61/2	165	7 700	1 180 000	308	45 000	52
A2x2	50	3 600	1 100 000	250	77 000	53
A2x4	102	9 000	1 350 000	250	82 000	53
A2x6	152	13 500	1 600 000	260	86 000	53
A2x8	203	19 200	1 900 000	260	90 000	53
A2x10	254	23 700	2 200 000	320	113 000	53
A3x5	127	15 800	2 260 000	480	154 000	54
A3x8	203	28 200	3 600 000	540	181 500	54
A3x12	305	44 000	5 400 000	610	204 000	54

17

Miniature Shock Absorbers MC5 to MC75

Self-Compensating

ACE miniature shock absorbers

are maintenance-free, self-contained hydraulic components. The model range MC5 to MC75 have a very short overall length and a low return force. The shock absorber is filled with a temperature stable oil and has an integrated positive stop. They are ideally suited for small, fast, handling equipment, rotary actuators, pick and place mechanisms and similar small automation equipment. A wide choice of metering hardnesses enable these units to cover applications with effective weights ranging from 0.3 kg to 36 kg.

The MC30M-Z model enables direct installation inside a pneumatic pressure chamber (up to 7 bar), due to the innovative ACE stretch membrane.

Accumulator

- Piston

Return Spring

Pressure Chamber

Outer Body

Impact velocity range: Ensure that effective weight of application is within the range of the unit chosen. Special range units available on request.

Material: Shock absorber body: Steel with black oxide finish. Accessories: Steel with black oxide finish or nitride hardened. Hardened stainless steel piston rod. Locknut MC5 and MC9: Aluminium.

W₄ capacity rating: (max. energy per hour Nm/hr) If your application exceeds the tabu-

lated W_4 figures consider additional cooling i.e. cylinder exhaust air etc. Ask ACE for further details.

Mounting: In any position. If precise end position datum is required consider use of the optional stop collar type AH.

Operating temperature range: 0 °C to 65 °C

Slot

On request: The MC Series are available with weartec finish (seawater resistant) or other special finishes.

Elastomer Insert

Positive Stop

Main Bearing

(MC25M and MC75M)

Piston Rod

Miniature Shock Absorbers MC5 to MC75

Self-Compensating

MC5M

Accessories, mounting, installation ... see pages 30 to 35.

MC9M

Accessories, mounting, installation ... see pages 30 to 35.

MC30M for use on new installations

Dims. in () add Suffix: -Z, type for direct installation inside a pressure chamber. Accessories, mounting, installation ... see pages 30 to 35.

MC25M

Accessories, mounting, installation ... see pages 30 to 35.

MC75M

Accessories, mounting, installation ... see pages 31 to 35

Available without rod end button on request

Capacity Chart

RF6

MB6SC2

MB5SC2

M5x0,5

M6x0 5

Thickness 8 mm

Thickness

Mounting Block

MC10M still available in future

M8x0.75 also available to order

Rectangular Flange

Mounting Block

MB10SC2

MB12

Rectangular Flange

	Max. Energy Capacity		Effective Weight me						
Type Part Number	W ₃ Nm/Cycle	W ₄ Nm/h	Self-Com me min. kg	pensating me max. kg	Min. Return Force N	Max. Return Force N	Rod Reset Time s	¹ Max. Side Load Angle	Weight kg
MC5M-1-B	0.68	2 040	0.5	4.4	1	5	0.2	2	0.003
MC5M-2-B	0.68	2 040	3.8	10.8	1	5	0.2	2	0.003
MC5M-3-B	0.68	2 040	9.7	18.7	1	5	0.2	2	0.003
MC9M-1-B	1	2 000	0.6	3.2	2	4	0.3	2	0.005
MC9M-2-B	1	2 000	0.8	4.1	2	4	0.3	2	0.005
MC10ML-B	1.25	4 000	0.3	2.7	2	4	0.6	3	0.010
MC10MH-B	1.25	4 000	0.7	5	2	4	0.6	3	0.010
MC30M-1	3.5	5 600	0.4	1.9	2	6	0.3	2	0.010
MC30M-2	3.5	5 600	1.8	5.4	2	6	0.3	2	0.010
MC30M-3	3.5	5 600	5	15	2	6	0.3	2	0.010
MC25ML	2.8	22 600	0.7	2.2	3	6	0.3	2	0.020
MC25M	2.8	22 600	1.8	5.4	3	6	0.3	2	0.020
MC25MH	2.8	22 600	4.6	13.6	3	6	0.3	2	0.020
MC75M-1	9	28 200	0.3	1.1	4	9	0.3	2	0.030
MC75M-2	9	28 200	0.9	4.8	4	9	0.3	2	0.030
MC75M-3	9	28 200	2.7	36.2	4	9	0.3	2	0.030

¹ For applications with higher side load angles consider using the side load adaptor (BV) pages 30 to 34.

ssue 4.2009 Specifications subject to change

(ACE) StoBdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: info@acecontrols-int.com

Miniature Shock Absorbers MC150 to MC600

Self-Compensating

20

ACE miniature shock absorbers "Rolling diaphragm seal system are maintenance-free, self-contained up to 25 million cycles hydraulic components. The hermetically possible!" sealed rolling diaphragm seal system used on the MC150 to MC600 model range provides the highest possible cycle lifetime; up to 25 million cycles being achievable. All models incorporate an integral positive stop. The rolling diaphragm seal provides an extremely low rod return force. These models can be directly mounted into the end cover of pneumatic cylinders (up to 7 bar) to provide superior end damping compared to normal cylinder cushions. By adding the optional side load adaptor it is possible to accept side loads up to 25° from the axis. The wide range of models available ensure a seamless range of operation on applications with effective weights ranging from 0.9 kg up to 4 536 kg by selecting the appropriate model. **Rolling Diaphragm Seal Diaphragm Locator O-Ring Piston with Integral Positive Stop** Impact velocity range: Ensure that effective weight of application is within the range of the unit chosen. Special range units available on request. Material: Shock absorber body: Nitride hardened steel. Hardened stainless steel piston rod. Accessories: Steel with black oxide finish or nitride hardened. Rolling diaphragm seal: EPDM. Pressure Note: Local contamination can affect the rolling seal and Chamber reduce the lifetime. Please contact ACE for a suitable with Metering solution. Orifices

Internal

Hex Socket

W₄ capacity rating: (max. energy per hour Nm/hr) If your application exceeds the tabu-

lated W₄ figures consider additional cooling i.e. cylinder exhaust air etc. Ask ACE for further details.

Mounting: In any position. If precise end position datum is required consider use of the optional stop collar type AH.

Operating temperature range: 0 °C to 66 °C

On request: Stainless steel outer body. Weartec finish (seawater resistant). Other finishes available to special order.

Piston Rod

Outer Body

Self-Retaining

Main Bearing

Miniature Shock Absorbers MC150 to MC600

RF14

M5x12

26

34

PP150

ø12

Nylon Button

 $W_{3} max. = 14 Nm$

PP225

Ø17

Ø6,3

Ø4,8

Self-Compensating

M14x1 also available to special order

Accessories, mounting, installation ... see pages 31 to 35.

MC225M

Nylon Button

39

Rectangular Flange

M14x1,5

4.5

Thickness 12 mm

21

MB14

M14x1,5

Accessories, mounting, installation ... see pages 32 to 35.

MC600M

M27x3 also available to special order

Accessories, mounting, installation ... see pages 32 to 35.

Capacity Chart

	Max. Energ	y Capacity	Effective	Weight me					
Type Part Number	W ₃ Nm/Cycle	W ₄ Nm/h	Self-Com me min. kg	pensating me max. kg	Min. Return Force N	Max. Return Force N	Rod Reset Time s	¹ Max. Side Load Angle °	Weight kg
MC150M	20	34 000	0.9	10	3	8	0.4	4	0.06
MC150MH	20	34 000	8.6	86	3	8	0.4	4	0.06
MC150MH2	20	34 000	70	200	3	8	0.4	4	0.06
MC150MH3	20	34 000	181	408	3	8	1	4	0.06
MC225M	41	45 000	2.3	25	4	9	0.3	4	0.15
MC225MH	41	45 000	23	230	4	9	0.3	4	0.15
MC225MH2	41	45 000	180	910	4	9	0.3	4	0.15
MC225MH3	41	45 000	816	1 814	4	9	0.3	4	0.15
MC600M	136	68 000	9	136	5	10	0.6	2	0.26
MC600MH	136	68 000	113	1 130	5	10	0.6	2	0.26
MC600MH2	136	68 000	400	2 300	5	10	0.6	2	0.26
MC600MH3	136	68 000	2 177	4 536	5	10	0.6	2	0.26

¹ For applications with higher side load angles consider using the side load adaptor (BV) pages 31 to 34.

 $W_3 max. = 33 Nm$ PP600 **RF25 MB25** M25x1,5 M25x1,5 Ø23 M6x14 Ø8 42 34 6 52 Thickness 25 mm Nylon Button **Rectangular Flange Clamp Mount**

 $W_{3} max. = 68 Nm$

Miniature Shock Absorbers SC190 to SC925

Soft-Contact and Self-Compensating

22

ACE miniature shock absorbers are maintenance-free, self-contained hydraulic components. The SC-Series provide dual performance benefits. They provide "soft contact" deceleration where initial impact reaction forces are very low with the advantages of self-compensation to cope with changing input energy conditions without adjustment. They have long stroke lengths to provide smooth deceleration and low reaction forces. They have an integrated mechanical stop and are ideal for use on handling equipment, linear transfers, rodless cylinders and pneumatic pick and place systems etc. The overlapping operating ranges enable the SC series to handle effective weights ranging 0.7 kg up to 2088 kg. With the optional side load adaptor fitted they can cope with the side loads up to 25°.

Piston Rod

Positive Stop
 Rod Seals

Main Bearing

Accumulator

Piston
 Piston Check Valve

Pressure Chamber with Metering Orifices

Return Spring

Outer Body

Impact velocity range: Ensure that effective weight of application is within the range of the unit chosen. Special range units available on request.

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with black oxide finish or nitride hardened. Piston rod: Hardened stainless steel.

 W_4 capacity rating: (max. energy per hour Nm/hr) If your application exceeds the tabu-

lated W_4 figures consider additional cooling i.e. cylinder exhaust air etc. Ask ACE for further details.

Mounting: In any position. If precise end position datum is required consider use of the optional stop collar type AH.

Operating temperature range: 0 °C to 66 °C

On request: Weartec finish (seawater resistent). Other special finishes available to special order.

Miniature Shock Absorbers SC190 to SC925

Soft-Contact and Self-Compensating

M14x1 and M16x1 also available to special order Accessories, mounting, installation ... see pages 31 to 35.

SC300M

M22x1.5 also available to special order

Accessories, mounting, installation ... see pages 32 to 35.

SC650M

M26x1.5 also available to special order

Accessories, mounting, installation ... see pages 32 to 35.

Accessories, mounting, installation ... see pages 32 to 35.

Available without rod end button on request.

Capacity Chart

	Max. Energ	y Capacity		Effective	Weight me						
Type Part Number	W ₃ Nm/Cycle	W ₄ Nm/h	Soft-C me min. kg	Contact me max. kg	Self-Com me min. kg	pensating me max. kg	Min. Return Force N	Max. Return Force N	Rod Reset Time s	¹ Max. Side Load Angle	Weight kg
SC190M-0	25	34 000	-	-	0.7	4	4	9	0.25	5	0.08
SC190M-1	25	34 000	2.3	6	1.4	7	4	9	0.25	5	0.08
SC190M-2	25	34 000	5.5	16	3.6	18	4	9	0.25	5	0.08
SC190M-3	25	34 000	14	41	9	45	4	9	0.25	5	0.08
SC190M-4	25	34 000	34	91	23	102	4	9	0.25	5	0.08
SC300M-0	33	45 000	-	-	0.7	4	5	10	0.1	5	0.11
SC300M-1	33	45 000	2.3	7	1.4	8	5	10	0.1	5	0.11
SC300M-2	33	45 000	7	23	4.5	27	5	10	0.1	5	0.11
SC300M-3	33	45 000	23	68	14	82	5	10	0.1	5	0.11
SC300M-4	33	45 000	68	181	32	204	5	10	0.1	5	0.11
SC650M-0	73	68 000	-	-	2.3	14	11	32	0.2	5	0.31
SC650M-1	73	68 000	11	36	8	45	11	32	0.2	5	0.31
SC650M-2	73	68 000	34	113	23	136	11	32	0.2	5	0.31
SC650M-3	73	68 000	109	363	68	408	11	32	0.2	5	0.31
SC650M-4	73	68 000	363	1 089	204	1 180	11	32	0.2	5	0.31
SC925M-0	110	90 000	8	25	4.5	29	11	32	0.4	5	0.39
SC925M-1	110	90 000	22	72	14	90	11	32	0.4	5	0.39
SC925M-2	110	90 000	59	208	40	272	11	32	0.4	5	0.39
SC925M-3	110	90 000	181	612	113	726	11	32	0.4	5	0.39
SC925M-4	110	90 000	544	1 952	340	2 088	11	32	0.4	5	0.39

¹ For applications with higher side load angles consider using the side load adaptor (BV) pages 31 to 34.

Rectangular Flange

Rectangular Flange

RF25

M6y1

Clamp Mount

MB25

MB14

M14x1,5

Thickness 12 mm 23

Rectangular Flange

M25x1.5

RF25

42

Rectangular Flange

Clamp Mount

Clamp Mount

23

Miniature Shock Absorbers SC²-Series

Self-Compensating

24

ACE miniature shock absorbers are maintenance-free, self-contained hydraulic components. The design of the SC²-Series units combines the piston and inner tube into a single component and provides more than double the energy capacity of previous units in the same envelope size. They have an integrated mechanical stop and are ideal for use on handling equipment, linear transfers, rodless cylinders and pneumatic pick and place systems etc. The smaller sizes up to type SC²190, have a dynamic membrane seal which allows direct installation into the end cover of pneumatic cylinders (for end position damping max. 7 bar). The greatly increased energy capacity coupled with overlapping effective weⁱght ranges covering from 1 kg up to 6 350 kg makes the SC²-Series units ideal for rotary actuators. With the optional side load adaptor fitted they can cope with the side loads up to 25°.

"Combined piston and inner tube – increased energy capacity up to 200%!"

> Piston Rod with Integrated Positive Stop

Rolling Diaphragm Seal (Type SC²190)

Self-Retaining Main Bearing

Piston

Piston Check Valve

Pressure Chamber with Metering Orifices

Return Spring

Outer Body

Impact velocity range: Ensure that effective weight of application is within the range of the unit chosen. Special range units available on request.

Material: Shock absorber body: Nitride hardened steel.

Accessories: Steel with black oxide finish or nitride hardened. Piston rod: Hardened stainless steel.

Mounting: In any position. If precise end position datum is required consider use of the optional stop collar type AH.

Operating temperature range: 0 °C to 66 °C

On request: Weartec finish (seawater resistent). Other special finishes available to special order.

Miniature Shock Absorbers SC²25 to 650

Self-Compensating

SC25M

Accessories, mounting, installation ... see pages 30 to 35.

SC75M

Accessories, mounting, installation ... see pages 31 to 35.

SC190M

M14x1 also available to special order

Accessories, mounting, installation ... see pages 31 to 35.

SC300M

Accessories, mounting, installation ... see pages 32 to 35.

SC650M

Accessories, mounting, installation ... see pages 32 to 35.

Capa	city	Cha	rt

	Max. Energy	Capacity		Ef	ffective Weigh	it me						
Type	Wa	W	s	oft		На	rd	Min.	Max.	Rod	¹ Max. Side	Weight
Part Numbe	r Nm/Cycle	Nm/h	-5	-6	-7	-8	-9	Return Force	Return Force	Reset Time	Load Angle	kg
			min kg max	min kg max	min kg max	min kg max	min kg max	N	N	S	٥	
SC25M	10	16 000	1 - 5	4 - 44	42 - 500			4.5	14	0.3	2	0.027
SC75M	16	30 000	1 - 8	7 - 78	75 - 800			6	19	0.3	2	0.045
SC190M	31	50 000	2 - 16	13 - 140	136 - 1 550			6	19	0.4	2	0.060
SC300M	73	45 000	11 - 45	34 - 136	91 - 181	135 - 680	320 - 1 950	8	18	0.2	5	0.150
SC650M	210	68 000	23 - 113	90 - 360	320 - 1 090	770 - 2 630	1 800 - 6 350	11	33	0.3	5	0.315

¹ For applications with higher side load angles consider using the side load adaptor (BV) pages 30 to 34.

M12x1

M14x1,5

M20x1.5

M25x1,5

RF12

RF14

M5x12

RF20

M6x14

RF25

M6x14

M10x1

25

Mounting Block

MB12SC2

Mounting Block

MB14SC2

Rectangular Flange

26

36

42

52

Rectangular Flange

46

Rectangular Flange

34

Rectangular Flange

Mounting Block

MB20SC2

Mounting Block

MB25SC2

Mounting Block

Miniature Shock Absorbers MA

Adjustable

 W_4 capacity rating: (max. energy per hour Nm/hr) If your application exceeds tabulated W_4 figures consider additional cooling i.e. cylinder exhaust air etc. Ask ACE for assistance.

Mounting: In any position. If precise end position datum is required consider use of the optional stop collar type AH. Install a mechanical stop 0.5 to 1 mm before end of stroke on FA1008.

Operating temperature range: 0 °C to 66 °C

On request: Weartec finish (seawater resistent). Other special finishes available to special order.

Miniature Shock Absorbers MA

Adjustable

Available without rod end button on request. Models MA600M/MA900M available with clevis mounting.

Capacity Chart

	Max. Energy	Max. Energy Capacity		Effective Weight me					
Type Part Number	W ₃ Nm/Cycle	W ₄ Nm/h	Adju me min. kg	istable me max. kg	Min. Return Force N	Max. Return Force N	Rod Reset Time s	¹ Max. Side Load Angle °	Weight kg
MA30M	3.5	5 650	0.23	15	1.7	5.3	0.3	2	0.013
FA1008VD-B	1.8	3 600	0.2	10	3	6	0.3	2.5	0.026
MA50M	5.5	13 500	4.5	20	3	6	0.3	2	0.025
MA35M	4	6 000	6	57	5	11	0.2	2	0.043
MA150M	22	35 000	1	109	3	5	0.4	2	0.06
MA225M	25	45 000	2.3	226	5	10	0.1	2	0.13
MA600M	68	68 000	9	1 360	10	30	0.2	2	0.31
MA900M	100	90 000	14	2 040	10	35	0.4	1	0.4

¹ For applications with higher side load angles consider using the side load adaptor (BV) pages 30 to 34.

Shock Absorber Accessories M5 to M25

Selection Chart for Shock Absorber Accessories

28

		The second se	0		Banna	
				ی ک		
	Locknut	Stop Collar	Mounting Block/ Clamp Mount ¹	Rectangular Flange	Universal Mount	Side Load Adaptor ²
Shock Absorber Type	КМ	АН	MB	RF	UM	BV
Thread Size M5x0.5						
MC5M	KM5	ΔH5	MB5SC2	-	_	_
WCOW	NW5	Allo	WD3002			
Thread Size M6x0.5						
мсам	KM6	AH6	MB6SC2	RE6		
MC3M	KWO	AITO	MD0302	hru	_	_
Thread Size M8x1						
MA30M	KM8	AH8	MB8SC2	BF8	-	BV8
MC10M	KM8	AH8	MB8SC2	BF8	-	BV8A
MC30M	KM8	AH8	MB8SC2	RF8	_	BV8
Thread Size M10x1						
MA50M	KM10	AH10	MB10SC2	RF10	UM10	BV10
MC25M	KM10	AH10	MB10SC2	RF10	UM10	BV10
SC25M	KM10	AH10	MB10SC2	RF10	UM10	BV10SC
FA1008	KM10	AH10	MB10SC2	RF10	UM10	-
Thread Size M12x1						
MA35M	KM12	AH12	MR12	RE12	LIM12	RV12
MC75M	KM12	AH12 AH12	MB12	RE12	LIM12	BV12
SC75M	KM12	ΔH12	MB12SC2	RF12	LIM12	BV12SC
oorom	NWI 12	AITZ	MB 12002	10.12	OWIZ	541200
Thread Size M14x1.5						
MA150M	KM14	AH14	MB14	RF14	UM14	BV14
MC150M	KM14	AH14	MB14	RF14	UM14	BV14
SC190M0-4	KM14	AH14	MB14	RF14	UM14	BV14SC
SC190M5-7	KM14	AH14	MB14SC2	RF14	UM14	BV14
Inread Size M20x1.5	10100		ND00	DECC	111.00	DUCCCC
MA225M	KM20	AH20	MB20	RF20	UM20	BV20SC
MC225M	KM20	AH20	MB20	KF20	UM20	BV20
SC300M0-4	KM20	AH20	MB20	RF20	UM20	BV20SC
SC300M2-9	KM20	AHZU	MB20202	KF20	UM20	BV205C
Thread Size M25x1.5						
MA600M	KM25	AH25	MB25	BE25	UM25	BV25SC
MA900M	KM25	AH25	MB25	RF25	UM25	-
MC600M	KM25	AH25	MB25	RF25	UM25	BV25
SC650M0-4	KM25	AH25	MB25	RF25	UM25	BV25SC
SC925M	KM25	AH25	MB25	RF25	UM25	-
SC650M5-9	KM25	AH25	MB25SC2	RF25	UM25	BV25SC

¹ Use a locknut for protection if a clamp mount MB... SC2 is installed.
 ² Only mountable on units without button. Remove the button from the shock absorber, if there's one fitted. See page 34.

Shock Absorber Accessories M5 to M25

9	0
4	3

Steel Shroud ²

Collar

Switch Stop Collar

Steel/Urethane Button

Nylon Button

РВ	SP	AS	PS	BP	PP	Page
Thread Size M5x0.5						
_	_	_	-	_	-	30
						00
Thread Size M6x0.5						
-	-	-	-	-	-	30
Thread Size M8x1						
PB8	-	-	-	-	-	30
PB8-A	-	-	-	-	-	30
PB8	-	-	-	-	-	30
Thread Size M10x1						
PB10	_	AS10	PS10	_	_	30
PB10	-	AS10	PS10	_	-	30
PB10SC	_	-	-	_	-	30
_	-	-	-	-	-	30
Thread Size M12x1						
PB12	-	AS12	PS12	-	-	31
PB12	-	AS12	PS12	-	-	31
PB12SC	SP12	AS12	PS12SC	-	-	31
Thread Size M14x1.5						
PB14	SP14	AS14	PS14	-	included	31
PB14	SP14	AS14	PS14	-	PP150	31
PB14SC	-	AS14	included	BP14	-	31
PB14	SP14	AS 14	PS14	-	-	31
Thread Size M20x1.5						
PB20SC	_	AS20	included	BP20	_	32
PB20	SP20	AS20	PS20	_	PP225	32
PB20SC	-	AS20	included	BP20	-	32
PB20SC	-	AS20	included	_	-	32
Thread Size M25v1 5						
DR0550		1825	included	PD25		22
FD2330	_	AS25	included	BP25	_	32
=	-	AULU	moluueu	DI 20	-	04

PB25SC	-	AS25	included	BP25	-	32
-	-	AS25	included	BP25	-	32
PB25	SP25	AS25	PS25	-	PP600	32
PB25SC	-	AS25	included	BP25	-	32
-	-	AS25	included	BP25	-	32
PB25	-	AS25	included	-	-	32

² Only mountable on units without button.

Remove the button from the shock absorber, if there's one fitted. See page 34.

Dimensions see pages 30 to 32.

Shock Absorber Accessories M5 to M10

Selection Chart See Pages 28 to 29

Mounting, installation... see pages 33 to 35.

ACE Stoßdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: info@acecontrols-int.com

Mounting, installation... see pages 33 to 35.

Mounting, installation... see pages 33 to 35.

32

inc. Proximity Switch

Button

SF

Low air consumption. The constant air bleed prevents contaminants passing the wiper ring and entering the shock absorber seal area. Note! Do not switch off air supply whilst machine is operating! The

33

air bleed collar can not be used on all similar body thread sized shock absorbers. The air bleed collar is only for types MC150M to MC600M, MA150M, SC²75 and SC²190M5-7.

Grinding beads, sand, welding splatter, paints and adhesives etc. can adhere to the piston rod. They then damage the rod seals and the shock absorber quickly fails. In many cases the installation of the optional steel shroud can provide worthwhile protection and increase lifetime.

Note! When installing don't forget to allow operating space for the shroud to move as the shock absorber is cycled. For part number MA, MC, SC please order with "M-880" suffix. Part numbers MA150M, MC150M to MC600M and SC²25M to SC²190M5-7 are supplied without a button, for advice on removing the button see page 34.

Shock Absorber

Up to M25x1.5

Mounting and Installation Hints

With side load impact angles of more than 3° the operation lifetime of the shock absorber reduces rapidly due to increased wear of the rod bearings. The optional BV side load adaptor provides long lasting solution. Secure the side load adaptor with Loctite or locknut on the shock absorber.

Material: Threaded body and plunger: Hardened high tensile steel. Hardened 610 HV1.

Note: For material combination plunger/impact plate use similar hardness values. We recommend that you install the shock absorber/side load adaptor using the thread on the side load adaptor.

Note! Installation with clamp mount MB... not possible. Use mounting block MB... SC².

Problem: Rotating impact motion causes high side load forces on the piston rod. This increases bearing wear and possibly results in rod breakage or bending. **Solution:** Install side load adaptor BV.

Formulae:

$$\alpha = \tan^{-1} \left(\frac{s}{R_s}\right) \qquad R_{smin} = \frac{s}{\tan \alpha \max}$$
Example:

$$s = 0.025 m \qquad \alpha \max = 25^{\circ} (Type BV25)$$

$$R_s = 0.1 m$$

$$\alpha = \tan^{-1} \left(\frac{0.025}{0.1}\right) \qquad R_{smin} = \frac{0.025}{\tan 25}$$

α	= side load angle $^{\circ}$	R _s = mour	nting radius m
α max	= max. angle °	R _{smin} = min.∣	possible
S	= absorber stroke m	mour	nting radius m

Maximum angle:

BV8, BV10 and BV12 = 12.5° BV14, BV20 and BV25 = 25°

Note: By repositioning the centre of the stroke of the side load plunger to be at 90 degrees to the piston rod, the side load angle can be halved. The use of an external positive stop due to high forces encountered is required.

Note! The BV adaptor can only be installed onto a shock absorber without rod end button.

Part Number: MA, MC, SC...-880

(Models MA150M, MC150M to MC600M and SC²25M to SC²190M5-7 are supplied as standard without buttons.)

To remove button from existing absorber: Clamp shock absorber in mounting block and warm button carefully. Grip the button with pliers and pull off along rod axis.

Time required for warming up the button:

up to M12x1: approx. 10 sec. from M14x1.5 up: approx. 30 sec.

M2,5 8

- 10

7,5

PNP proximity switch data:

Supply voltage: 10-27 VDC Ripple < 10 % Load current max.: 100 mA Operating temperature range: -10 °C to +60 °C Residual voltage: max. 1 V Protection: IP67 (IEC 144) with LED-indicator Proximity switch N/Open when shock absorber extended. When shock absorber is fully compressed switch closes and LED indicator lights.

Industrial Shock Absorbers MC33 to MC64

Self-Compensating

36

This range of self-compensating shock absorbers is part of the innovative MAGNUM series from ACE. You profit from the enhanced product life in the most difficult operating environments provided by the latest seal technology, hardened main bearing and also the integrated positive stop. You achieve 50% more energy absorption capacity and a much wider range of effective weight capability (between 3 kg and 63700 kg!). This offers you the capability of mounting shock absorbers with the highest energy capacity ratings for their size in the industry and allows full exploitation of your machinery potential. You can access new possibilities in machine design and construction since this range offers such features as a fully threaded outer body and a new clamping flange system.

Integrated Positive Stop

Main Bearing
 Fully Threaded Outer Body

Membrane Accumulator

Increased Piston Area
 Hardened Piston Ring
 Hardened One-Piece
 Pressure Chamber

Impact velocity range: 0.15 to 5 m/s, on request under 0.15 m/s and up to 20 m/s.

Operating fluid: Automatic Transmission Fluid (ATF) at 42cSt.

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with black oxide finish oder nitride hardened. Piston rod: Steel hardened and chrome plated. Rod end button: Hardened steel with black oxide finish. Return spring: Zinc plated or plastic-coated. For optimum heat dissipation do not paint shock absorber.

Capacity rating: For emergency use only applications it is sometimes possible to exceed the published max. capacity ratings. Please consult ACE for further details. If your application exceeds the tabulated W_4 figures (max. energy per hour Nm/hr) consider additional cooling. Ask ACE for further details.

Mounting: In any position

Operating temperature range: -12 °C to 70 °C. Higher temperatures see page 46.

On request: Plated finishes. Weartec finish (seawater resistant), special oils. Mounting inside air cylinders and other special options are available on request.

Noise reduction: 3 to 7 dB when using the impact buttons with urethane insert.

Heavy Duty One-Piece Steel Outer Body

36
Industrial Shock Absorbers MA and ML33 to 64

Adjustable

This adjustable shock absorber from ACE is unique. The innovative MAGNUM series models provide the next generation of deceleration technology to meet the needs of the future. The latest seal technology, a hardened main bearing and the integrated positive stop provide a significant increase in operating lifetime. Other innovations such as the front and rear adjuster, new clamping flanges and the fully threaded outer body provide many new options in installation and mounting. Exploit the advantages of this series in your applications with its 50% increased energy capacity and a much wider effective weight range. The effective weight range extends from 9 kg up to 80 000 kg. The MA range models cover the majority of standard applications, whilst the ML range is specially designed for low velocity/high effective weight applications from 300 kg up to 500 000 kg effective weight.

Front Adjuster

37

Integrated Positive Stop

Main Bearing

Fully Threaded Outer Body

Membrane Accumulator

- Increased Piston Area

Hardened Piston Ring

Hardened One-Piece Pressure Chamber

Adjustment: Turning the front stop collar or rear adjuster towards 0 makes the unit harder. Turning towards 9 makes the unit softer.

Impact velocity range: Type ML: 0.02 up to 0.46 m/s, type MA: 0.15 up to 5 m/s, (up to 20 m/s on request).

Operating fluid: Automatic Transmission Fluid (ATF) at 42cSt.

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with black oxide finish oder nitride hardened. Piston rod: Steel hardened and chrome plated. Rod end button: Hardened steel with black oxide finish. Return spring: Zinc plated or plastic-coated. For optimum heat dissipation do not paint shock absorber.

Capacity rating: For emergency use only applications it is sometimes possible to exceed the published max. capacity ratings. Please consult ACE for further details. If your application exceeds the tabulated W_4 figures (max. energy per hour Nm/hr) consider additional cooling. Ask ACE for further details.

Mounting: In any position

Locking

Screw (MA/ ML64 only)

Heavy Duty

One-Piece

Steel Outer

Body

Rear

Adjuster

Operating temperature range: -12 °C to 70 °C. Higher temperatures see page 46.

On request: Plated finishes. Weartec finish (seawater resistant), special oils. Mounting inside air cylinders and other special options are available on request.

Noise reduction: 3 to 7 dB when using the impact buttons with urethane insert.

Self-Compensating and Adjustable

S33

Side Foot Mounting Kit S33 = 2 flanges + 4 screws M6x40, DIN 912

C33

Clevis Mounting Kit C33 = 2 clevis eyes. Delivered assembled to shock absorber. Use positive stop at both ends of travel.

Because of the thread pitch the fixing holes for the second foot mount should only be drilled and tapped after the first foot mount has been fixed in position.

Adjuster (only MA and ML)

Tightening torque: 11 Nm Clamping torque: > 90 Nm

SF33

Secure with pin or use additional bar.

Due to limited force capacity the respective ability should be reviewed by ACE.

Clevis Flange

SF33 = flange + 4 screws M6x20, DIN 912 Tightening torque: 7.5 Nm Clamping torque: > 50 Nm

Dimensions

Туре	¹ Stroke	A max	B max	L1 min	L1 max	L2	L3	L5 max	L6 max
7 1 ⁻¹	mm								
MC, MA, ML3325M	25	138	23	25	60	83	68	39	168
MC, MA, ML3350M	50	189	48.5	32	86	108	93	64	218

¹ Nominal stroke length (without integral stop collar fitted).

Capacity Chart MC33

			¹ Effective Weight me											
Туре	² W ₃	W ₄	W ₄	W ₄	S	oft			Hard	Min.	Max.	Rod	Max.	Weight
Self-Com-	Nm/Cycle	Self-Con-	with Air/Oil	with Oil Re-	-0	-1	-2	-3	-4	Return	Return	Reset	Side Load	kg
pensating		tained	Tank	circulation	min max	min max	min max	min max	min max	Force	Force	Time	Angle	
		Nm/h	Nm/h	Nm/h	kg	kg	kg	kg	kg	Ν	Ν	S	٥	
MC3325M	155	75 000	124 000	169 000	3 - 11	9 - 40	30 - 120	100 - 420	350 - 1 420	45	90	0.03	4	0.45
MC3350M	310	85 000	135 000	180 000	5 - 22	18 - 70	60 - 250	210 - 840	710 - 2 830	45	135	0.06	3	0.54

Capacity Chart MA/ML33

			/										
		Max. Ener	gy Capacity		¹ Effective Weight me								
Type Adjustable	² W ₃ Nm/Cycle	W ₄ Self-Con- tained Nm/h	W ₄ with Air/Oil Tank Nm/h	W ₄ with Oil Re- circulation Nm/h	min	kg	max		Min. Return Force N	Max. Return Force N	Rod Reset Time s	Max. Side Load Angle °	Weight kg
MA3325M	170	75 000	124 000	169 000	9	-	1 700		45	90	0.03	4	0.45
ML3325M	170	75 000	124 000	169 000	300	-	50 000		45	90	0.03	4	0.45
MA3350M	340	85 000	135 000	180 000	13	-	2 500		45	135	0.06	3	0.54
ML3350M	340	85 000	135 000	180 000	500	-	80 000		45	135	0.06	3	0.54

¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. Specifications relate to the effective stroke length (B max).

Shock Absorber Accessories

M33x1.5

NM33

Locking Ring

Poly Button

BV3350

M33x1,5

Optional button with elastomer insert for noise suppression. Option supplied ready mounted onto the shock absorber. For self installation see mounting instructions on page 48.

M45x1,5

max

53,5

Ø'30

Square Flange

Install with 4 machine screws Tightening torque: 11 Nm Clamping torque: > 90 Nm

BV3325

Side Load Adaptor

Mounting, installation etc. see pages 34 to 35 and 45.

PB3325

Steel Shroud

PB3350

Side Load Adaptor

Stroke

48,5

TITLE

128

AS33

Switch Stop Collar inc. Proximity Switch and Poly Button with elastomer insert

¹A max 198 10 15 10 15 10 36 50 61,5 Stroke

Steel Shroud ¹ Total installation length of the shock absorber inc. steel shroud Interchange parts for the earlier MC-Types available on request.

Mounting, installation etc. see page 45.

Ordering Example

Self-Compensating Thread Size M33		
Metric Thread	 	
(omitted when using thread UNF 1 1/4-12) Effective Weight Range Version		

MC3325M-1 Model Type Prefix

Standard Models

Self-Contained with Return Spring MC Self-Compensating MA Adjustable ML adjustable, for lower impact velocity

Special Models

Air/Oil Return without Return Spring MCA, MAA, MLA

Air/Oil Return with Return Spring MCS, MAS, MLS

Self-Contained without Return Spring MCN, MAN, MLN

<u>3</u>9

Self-Compensating and Adjustable

Thread UNF 1 3/4-12 also available on request (omit suffix -M from part number)

S45

Because of the thread pitch the fixing holes for the second foot mount should only be drilled and tapped after the first foot mount has been fixed in position.

Adjuster (only MA and ML)

Tightening torque: 27 Nm Clamping torque: > 350 Nm

SF45

Secure with pin or use additional bar.

Due to limited force capacity the respective ability should be reviewed by ACE.

Side Foot Mounting Kit S45 = 2 flanges + 4 screws M8x50, DIN 912

C45

Clevis Mounting Kit C45 = 2 clevis eyes. Delivered assemble

 $\mbox{C45}$ = 2 clevis eyes. Delivered assembled to shock absorber. Use positive stop at both ends of travel.

Clevis Flange

SF45 = flange + 4 screws M8x20, DIN 912 Tightening torque: 7.5 Nm Clamping torque: > 140 Nm

Dimensions

Туре	¹ Stroke mm	A max	B max	L1 min	L1 max	L2	L3	L5 max	L6 max
MC, MA, ML4525M	25	145	23	32	66	95	66	43	200
MC, MA, ML4550M	50	195	48.5	40	92	120	91	68	250
MC, MA4575M	75	246	74	50	118	145	116	93	301

¹ Nominal stroke length (without integral stop collar fitted).

Capacity Chart MC45

	Max. Energy Capacity				¹ Effective Weight me									
Туре	² W ₃	W_4	W_4	W4	S	oft			Hard	Min.	Max.	Rod	Max.	Weight
Self-Com-	Nm/Cycle	Self-Con-	with Air/	with Oil Re-	-0	-1	-2	, ⁻³ ,	-4	Return	Return	Reset	Side Load	kg
pensating		tained	Oil Tank	circulation	min max	min max	min max	min max	min max	Force	Force	Time	Angle	
		Nm/h	Nm/h	Nm/h	kg	kg	kg	kg	kg	N	N	S	0	
MC4525M	340	107 000	158 000	192 000	7 - 27	20 - 90	80 - 310	260 - 1 050	890 - 3 540	70	100	0.03	4	1.13
MC4550M	680	112 000	192 000	248 000	13 - 54	45 - 180	150 - 620	520 - 2 090	1 800 - 7 100	70	145	0.08	3	1.36
MC4575M	1 020	146 000	225 000	282 000	20 - 80	70 - 270	230 - 930	790 - 3 140	2 650 - 10 600	50	180	0.11	2	1.59

Capacity Chart MA/ML45

	Ma	Max. Energy Capacity ¹ Effective Weight me										
Type Adjustable	² W ₃ Nm/Cycle	W ₄ Self-Con- tained Nm/h	W ₄ with Air/Oil Tank Nm/h	W ₄ with Oil Re- circulation Nm/h	min	kg	max	Min. Return Force N	Max. Return Force N	Rod Reset Time s	Max. Side Load Angle	Weight kg
MA4525M	390	107 000	158 000	192 000	40	-	10 000	70	100	0.03	4	1.13
ML4525M	390	107 000	158 000	192 000	3 000	-	110 000	70	100	0.03	4	1.13
MA4550M	780	112 000	192 000	248 000	70	-	14 500	70	145	0.08	3	1.36
ML4550M	780	112 000	192 000	248 000	5 000	-	180 000	70	145	0.08	3	1.36
MA4575M	1 170	146 000	225 000	282 000	70	-	15 000	50	180	0.11	2	1.59

¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

Specifications relate to the effective stroke length (B max).

Shock Absorber Accessories

M45x1.5

NM45

Locking Ring

see shock absorber dims.

Poly Button

Optional button with elastomer insert for noise suppression. Option supplied ready mounted onto the shock absorber. For self installation see mounting instructions on page 48.

41

Square Flange

AS45

Install with 4 machine screws Tightening torque: 27 Nm Clamping torque: > 200 Nm

BV4525

Side Load Adaptor

Mounting, installation etc. see pages 34 to 35 and 45.

PB4525

Steel Shroud

BV4550

Side Load Adaptor

PB4550

Ø 57

Switch Stop Collar inc. Proximity Switch and Poly Button with elastomer insert

Steel Shroud ¹ Total installation length of the shock absorber inc. steel shroud Interchange parts for the earlier MC-Types available on request.

Mounting, installation etc. see page 45.

Ordering Example

Adjustable	 4 4	♠ ♠
Thread Size M45		
Stroke 25 mm]
Metric Thread		
(omitted when using thread LINE 1.3/4-12)		

ML4525M Model Type Prefix

Standard Models

Self-Contained with Return Spring MC Self-Compensating MA Adjustable ML adjustable, for lower impact velocity

Special Models

Air/Oil Return without Return Spring MCA, MAA, MLA

Air/Oil Return with Return Spring MCS, MAS, MLS

Self-Contained without Return Spring MCN, MAN, MLN

Self-Compensating and Adjustable

Adjuster (only MA and ML)

Thread UNF 2 1/2-12 also available on Note: 150 mm stroke model does not include stop collar and request (omit suffix -M from part number) positive stop is provided by the rod button which is 60 mm dia.

S64

Because of the thread pitch the fixing holes for the second foot mount should only be drilled and tapped after the first foot mount has been fixed in position.

Side Foot Mounting Kit S64 = 2 flanges + 4 screws M10x80, DIN 912

C64

Clevis Mounting Kit

C64 = 2 clevis eyes. Delivered assembled to shock absorber ¹ with 150 mm stroke Dia. 60 mm. Order C64/150. Use positive stop at both ends of travel.

SF64

Tightening torque: 50 Nm

Clamping torque: > 350 Nm

Secure with pin or use additional bar.

Due to limited force capacity the respective ability should be reviewed by ACE.

Clevis Flange

SF64 = flange + 4 screws M10x20, DIN 912 Tightening torque: 15 Nm Clamping torque: > 200 Nm

Dimensions

Туре	¹ Stroke	A max	B max	L1 min	L1 max	L2	L3	L5 max	L6 max
	mm								
ML6425M	25	174	23	40	86	114	75.5	60	260
MC, MA, ML6450M	50	225	48.5	50	112	140	100	85	310
MC, MA64100M	100	326	99.5	64	162	191	152	136	410
MC, MA64150M	150	450	150	80	212	241	226	187	530

¹ Nominal stroke length (without integral stop collar fitted).

Capacity Chart MC64

	N	lax. Energ	gy Capaci	ty	¹ Effective Weight me									
Type Self-Com- pensating	² W ₃ Nm/Cycle	W ₄ Self-Con- tained Nm/h	W ₄ with Air/ Oil Tank Nm/h	W ₄ with Oil Re- circulation Nm/h	− 0	t -1	-2	-3	Hard -4	Min. Return Force N	Max. Return Force N	Rod Reset Time s	Max. Side Load Angle	Weight kg
MC6450M	1 700	146 000	293 000	384 000	35 - 140	140 - 540	460 - 1 850	1600 - 6300	5 300 - 21 200	90	155	0.12	4	2.9
MC64100M	3 400	192 000	384 000	497 000	70 - 280	270 - 1 100	930 - 3 700	3 150 - 12 600	10 600 - 42 500	105	270	0.34	3	3.7
MC64150M	5 100	248 000	497 000	644 000	100 - 460	410 - 1 640	1 390 - 5 600	4 700 - 18 800	16 000 - 63 700	75	365	0.48	2	5.1

Capacity Chart MA/ML64

	N	Max. Energy Capacity			Max. Energy Capacity ¹ Effective Weight me										
Type Adjustable	² W ₃ Nm/Cycle	W ₄ Self-Con- tained Nm/h	W ₄ with Air/ Oil Tank Nm/h	W ₄ with Oil Re- circulation Nm/h	min	kg	max	Min. Return Force N	Max. Return Force N	Rod Reset Time s	Max. Side Load Angle °	Weight kg			
ML6425M	1 020	124 000	248 000	332 000	7 000	-	300 000	120	155	0.06	5	2.5			
MA6450M	2 040	146 000	293 000	384 000	220	-	50 000	90	155	0.12	4	2.9			
ML6450M	2 040	146 000	293 000	384 000	11 000	-	500 000	90	155	0.12	4	2.9			
MA64100M	4 080	192 000	384 000	497 000	270	-	52 000	105	270	0.34	3	3.7			
MA64150M	6 120	248 000	497 000	644 000	330	-	80 000	75	365	0.48	2	5.1			

¹ The effective weight range limits can be raised or lowered to special order. ² For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. Specifications relate to the effective stroke length (B max).

Shock Absorber Accessories

M64x2

NM64

Locking Ring

Poly Button

BV6450

M64x2

1

Optional button with elastomer insert for noise suppression. Option supplied ready mounted onto the shock absorber. For self installation see mounting instructions on page 48.

M90x2

100

55

Ø'56

Stroke

48,5

11111

170

Side Load Adaptor

Square Flange

Ø11

0 80-

Square Flange Install with 4 machine screws Tightening torque: 50 Nm Clamping torque: > 210 Nm

QF90

Install with 4 machine screws Tightening torque: 50 Nm Clamping torque: > 210 Nm

> Clamping Slot Thickness

20 mm

BV6425

Side Load Adaptor

Mounting and installation see pages 34 and 45.

PB6425

Steel Shroud

PB6450

Interchange parts for the earlier MC-Types available on request.

Mounting and installation see page 45.

Ordering Example

Adjustable	•	4
Thread Size M64		
Stroke 50 mm		
Metric Thread		

(omitted when using thread UNF 2 1/2-12)

MA6450M Model Type Prefix

Standard Models

Self-Contained with Return Spring MC Self-Compensating MA Adjustable ML adjustable, for lower impact velocity

Special Models

Air/Oil Return without Return Spring MCA, MAA, MLA

Air/Oil Return with Return Spring MCS, MAS, MLS

Self-Contained without Return Spring MCN, MAN, MLN

Steel Shroud ¹ Total installation length of the shock absorber inc. steel shroud

43

44

Interchange Details A1 1/2

Replacement with the MAGNUM Series MA64 and MC64

Earlier	Model	MAGNUM Series							
Code	Adjustable	1 W ₃	Stroke mm	Adjustable	1 W ₃	Stroke mm	Self-Compensating	1 W ₃	Stroke mm
1	A11/2x2	2 350	50	MA6450M	2 040	50	MC6450M	1 700	50
2	A1 1/2x3 1/2	4 150	89	MA64100M	4 080	100	MC64100M	3 400	100
3	A1 1/2x5	5 900	127	MA64100M	4 080	100	MC64100M	3 400	100
4	A1 1/2x6 1/2	7 700	165	MA64150M	6 120	150	MC64150M	5 100	150

¹ Max. energy capacity per cycle in Nm

Billicitorio									
		¹ A11/2	¹ MA64						
Code	L5 min	L5 max	L5 max						
1	278.0	328.6	328.0						
2	317.0	405.6	417.0						
3	353.0	481.8	453.0						
4	412.0	577.0	562.0						

¹ Note! L5 max is not the same.

Mounting and Installation Hints

For MAGNUM M33x1.5 to M64x2

PB...

Steel Shroud

AS...

Switch Stop Collar

For side load impact angles from 3° to 25°

With side load impact angles of more than 3° the operation lifetime of the shock absorber reduces rapidly due to increased wear of rod bearings. The optional BV side load adaptor provides long lasting solution.

BV3325 (M45x1.5) for MC, MA, ML3325M (M33x1.5) BV3350 (M45x1.5) for MC, MA, ML3350M (M33x1.5)

BV4525 (M64x2) for MC, MA, ML4525M (M45x1.5)

BV4550 (M64x2) for MC, MA, ML4550M (M45x1,5)

BV6425 (M90x2) for ML6425M (M64x2)

BV6450 (M90x2) for MC, MA, ML6450M (M64x2)

Material: Threaded body and plunger: Hardened high tensile steel. Hardened 610 HV1.

Mounting: Directly mount the shock absorber/side mount assembly on the outside thread of the side load adaptor or by using the QF flange. You cannot use a foot mount.

Calculation example and installation hints see page 34.

For thread sizes M33x1.5, M45x1.5 and M64x2 with 25 or 50 mm stroke

Grinding beads, sand, welding splatter, paints and adhesives etc. can adhere to the piston rod. They then damage the rod seals and the shock absorber quickly fails. In many cases the installation of the optional steel shroud can provide worthwhile protection and increase lifetime.

Material: Hardened high tensile steel.

Mounting: To mount the PB steel shroud it is necessary to remove the rod end button of the shock absorber.

Note! When installing don't forget to allow operating space for the shroud to move as the shock absorber is cycled.

For thread sizes M33x1.5 and M45x1.5

The ACE stop light switch stop collar combination serves as a safety element to provide stroke position information for automatically sequenced machines. The compact construction allows its use in nearly any application. The standard rod button is detected by the proximity switch at the end of its stroke to provide switch actuation. The switch is normally open when the shock absorber is extended and only closes when it has completed its operating stroke. The AS switch stop collar combination is only delivered ready mounted onto the shock absorber c/w the switch.

Material: Hardened high tensile steel.

For circuit diagram of proximity switch see page 35.

Industrial Shock Absorbers MAGNUM 33-HT to 64-HT

Max. Energy Capacity

For High Ambient Temperatures and/or High Cycle Rates

Dimensions and Capacity Chart

								Nm per cycle	Nm per	hour	Max. Side-	Weight
Type Part Number	¹ Stroke mm	A max	в	D1	D2	L2	м	W ₃ max. Nm	at 20 °C W ₄ max. Nm	at 100 °C W ₄ max. Nm	Load Angle	kg
MC3325M	25	138	23.0	30	25	83	M33x1.5	155	215 000	82 000	4	0.45
MC3350M	50	189	48.5	30	25	108	M33x1.5	310	244 000	93 000	3	0.54
MC4525M	25	145	23.0	42	35	95	M45x1.5	340	307 000	117 000	4	1.13
MC4550M	50	195	48.5	42	35	120	M45x1.5	680	321 000	122 000	3	1.36
MC6450M	50	225	48.5	60	48	140	M64x2	1 700	419 000	159 000	4	2.90
MC64100M	100	326	99.5	60	48	191	M64x2	3 400	550 000	200 000	3	3.70

¹ Nominal stroke length (without stop collar fitted)

The calculation and selection of the most suitable shock absorber (effective weight range) for your application should be carried out or checked by ACE Controls. Adjustable models are also available on request.

MC3350M-2-HT

Ordering Example

	▲
Self-Compensating	
Thread Size M33	
Stroke 50 mm	
Metric Thread (omitted when using thread UNF)	
Effective Weight Range Code	
Version for High Temperature Use	

Details Required when Ordering

Load to be Decelerated	m	(kg)
Impact Velocity	v	(m/s)
Propelling Force	F	(N)
Operating Cycles per Hour	х	(/hr)
Number of Absorbers in Parallel	n	
Ambient Temperature	°C	

Technical Data

Impact velocity range: 0.15 to 5 m/s, up to 20 m/s on request.

Operating fluid: Special temperature stable synthetic oil

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with black oxide finish or nitride hardened. Piston rod: Steel hardened and chrome plated. Rod end button: Hardened steel with black oxide finish. Return spring: Zinc plated or plastic-coated. For optimum heat dissipation **do not** paint shock absorber.

Mounting: In any position

Operating temperature range: -20 °C to 150 °C

Capacity rating: For emergency applications it is sometimes possible to exceed above max. capacity ratings (please consult ACE for details). The above W₄ ratings (max. energy Nm per hour) can sometimes be increased by using an external air/oil tank (see page 47) and model version prefix **MCA** (please consult ACE for further details).

On request: Plated finishes for additional corrosion protection.

Ø 43 NPT 1/8'

Oil capacity 20 cm³ Material: Alu. caps and polycarbonate body.

Max. pressure 8 bar. Max. temperature 80 °C.

- Oil filling: ATF-Oil 42 cSt at 40 °C for all shock absorbers in MAGNUM Series. Mount air/oil tank higher than shock absorber. Bleed all air from system before operating.
- Attention: Exhaust tank before carrying out service. Check valve holds pressure!

Suggested Air/Oil tanks in accordance with W₄ ratings

Oil capacity 330 cm³ Material: Alu. caps and steel body polycarbonate sight gauge.

Oil capacity 2 600 cm³ Material: Alu. caps and steel body polycarbonate sight gauge.

Part Numbers

Туре	With T	ank Examples 1-4	With Rec	irc. Circuits Ex. 5-6	Conn. Pipe. Ø			
	Tank	Non-Return Valve	Tank	Non-Return Valve	Min.			
MCA, MAA, MLA33	A01	CV1/8	AO3	CV1/4	4			
MCA, MAA, MLA45	A01	CV1/8	AO3	CV3/8	6			
MCA, MAA, MLA64	AO3	CV1/4	AO691	CV1/2	8			
CAA, AA2	AO691	CV1/2	A082	CV3/4	15			
CAA, AA3	AO691	CV1/2	A082	CV3/4	19			
CAA4	A082	CV3/4	A082	CV3/4	38			
AO82 details on request								

Piston rod returns immediately to extended position when load moves away. Operation without main air supply possible for short periods.

0

Return stroke may be sequenced by pneumatic valve at any desired time. No return force until valve energised.

Return force can be adjusted by pressure regulator. Ensure safe minimum pressure to return shock absorber.

Spring return with air/oil tank. No air supply connected. Note: Will extend return time.

Thread Side ²

G1/8 indide

G1/8 inside

G1/4 inside

5

Part Numbers CV
Max. pressure: 20 bar
Max. temperature: 95 °C
Suitable for: Oil, air, wate

Connection of two shock absorbers to one air/oil tank is possible. Use next larger size tank. Combination with examples 2, 3 and 5 possible.

Туре			
Part No.	Α	В	С
CV1/8	19	24	1/8
CV1/4	29	33	1/4
CV3/8	29	33	3/8
CV1/2	41	40	1/2
CV3/4	48	59	3/4

G1/8 inside

G1/4 inside

MCA, MAA, MLA45

² on request (add suffix -PG/-P)

Tee-piece

С

47

Mechanical Stop

The MAGNUM Series units have a built in stop collar (mechanical stop) which also serves as the front adjuster.

If using a shock absorber without a stop collar it is important to install a mechanical stop 0.5 to 1mm before the end of the stroke.

General

For optimum heat dissipation do not paint the shock absorber. For applications in environments with acids, dusts or powders, abrasives, steam or water please protect the shock absorber and/or consider the special accessories on page 45. The shock absorber should be securely mounted onto a flat and smooth surface of adequate strength.

Self Compensating Models

The MC family of shock absorbers are self compensating. Providing the effective weight on the application remains within the band given in the capacity charts then no adjustment is necessary for changes in weights, speeds or propelling force. These units are available with five standard operating bands (me min. – me max.) and are identified by the suffix number after the model which goes from -0 (very soft) up to -4 (very hard).

The optimum deceleration is achieved when there is no abrupt change in the load velocity at the beginning or the end of the shock absorber stroke.

If there is a hard impact at the start of stroke

→ use the next softer version (i.e. lower suffix number). If there is a hard setdown at the end of stroke

use the next harder version, or mount two units in parallel.

Alternatively change to a larger bore size unit. Contact ACE for further advice.

Stop Collar + Front Adjuster ¹ ¹ MA and ML only

Adjustable Models

The adjustment has a graduated scale from 0 to 9. The adjuster in the body of MA/ML64 has a side mounted locking screw which should be loosened (1/2 turn max.) with a hex. key before commencing adjustment. The MAGNUM Series units can be adjusted by the hex. socket at the rear of the body or by rotating the front stop collar. Both adjusters are internally connected and will show the same adjustment value on the scales as they are turned. After installation cycle the equipment a few times and turn the adjustment until optimum deceleration is achieved (i.e. no abrupt change in the load velocity observed at the beginning or at the end of shock absorber stroke). The shock absorber is delivered set at 5.

If there is a hard impact at start of stroke

----- adjust the unit softer i.e. towards 9 on the scale.

If there is a hard setdown at end of stroke → adjust the unit harder i.e. towards 0.

Adjustment approaching "0" means:

- a) Impact velocity is too low:
- consider changing to Model type ML or:
- b) Shock absorber selected is too small:
- ----- use next larger size or mount 2 units in parallel.

Repairs

It is possible to overhaul ACE shock absorbers in M33 sizes and larger. We would recommend that damaged or worn shock absorbers are returned to ACE for repair. You will find that this is more economic than the comparative cost of repairing yourself. Spare parts and seal kits etc. are available however if required.

Special Shock Absorbers

Adjustable and Self-Compensating

More than Standard

ACE can also offer more than its already extensive range of standard products covering body sizes from M5 up to M130. For over 40 years we have designed and developed many customer specific "specials". These include units with special damping characteristics for unusual applications or non-standard materials or operating fluids. Special seals and mounting accessories for customers specific applications are also available.

Below are a few examples of the thousands of special options that we have provided in the past.

Special shock absorbers with damping in the pull direction. Available in medium bore sizes from M33x1.5 to M64x2.

Ask for details.

Special shock absorbers with non-standard spring for higher return force. For sizes from M33x1.5 upwards. 49

Ask for details.

Special shock absorbers with lengthened piston rods and clevis mounts for extended mounting points. Available in all sizes from M33x1.5 upwards.

Ask for details.

Special shock absorbers with guided anti-rotation head with built in roller for damping and then allowing the sideways transfer of heavy loads. Available on heavy duty units from M100x2 upwards.

Ask for details.

Shock absorbers with special anti-corrosion finishes. Options include plated or painted finishes, weartec finish for saltwater protection and units with all exposed parts manufactured from **V4A Stainless Steel**.

Type ¹	
Part No.	
MC150M-V4A	
MC150MH-V4A	
MC150MH2-V4A	
MC225M-V4A	
MC225MH-V4A	
MC225MH2-V4A	
MC600M-V4A	
MC600MH-V4A	
MC600MH2-V4A	
¹ For technical details see page 21. Middle bore sizes M33x1.5 and M45x1.5	

Heavy Industrial Shock Absorbers CA2 to CA4

50

The CA2 to CA4 complete the ACE product range of self-compensating shock absorbers. With these units ACE has a continous range of self-compensating units to handle effective weights from 0.3 kg up to 326000 kg. The robust CA series units are designed for really heavy duty applications. Damage caused by errors in adjustment setting is ruled out by their self-compensating design. You can select the correct model for your application using the ACE Selection Program or by using the capacity chart. In comparison with the earlier SAHS range the CA 2" has 70% and the new CA 3" 25% higher capacity. The CA units are maintenance-free and available self-contained or for use with an external air/oil tank.

Return Spring

Rod Button

Piston Rod

Main Bearing

Piston

Accumulator

Outer Body

Pressure Chamber with Metering Orifices

Positive Stop: Install mechanical stop 2.5 mm to 3 mm before the end of stroke.

Impact velocity range: 0.3 m/s up to 5 m/s

Operating fluid: Automatic Transmission Fluid (ATF) viscosity 42 cSt. at 40 °C

Material: Body and accessories: Steel with black oxide finish. Piston rod: Steel hardened and chrome plated. Rod end button: Steel hardened with black oxide finish. Return spring: Zinc plated. For optimum heat dissipation do not paint outer body.

Capacity rating: For emergency use only applications it may be possible to exceed published energy per cycle (W₃) figures. Please consult ACE for further details.

Mounting: In any position

Operating temperature range: -12 °C to 85 °C

On request: Special oils, or for higher or lower impact velocities outside range shown above, or other options please consult ACE. NHH

Heavy Industrial Shock Absorbers A1 1/2 to A3

The adjustable shock absorbers of the **ACE product series A1 1/2 to A3** cover an **effective weight range from 0.3 kg up to 204000 kg**. The robust A series units are designed for really heavy duty applications. The units are adjusted by means of a socket head screw in the rear end. The adjustable A series can replace the older SAHS series units with the same mounting dimensions. (Ask ACE for assistance.) The A units are maintenance-free and self-contained.

Positive Stop: Install mechanical stop 2.5 mm to 3 mm before the end of stroke.

Adjustment: Turning the adjustment screw towards "0" makes the unit harder and towards "9" makes it softer.

Piston

Accumulator

Outer Body

Pressure Chamber with Metering Orifices

Impact velocity range: 0.1 up to 5 m/s

Operating fluid: HLP 46 viscosity 46cSt. at 40 °C

Material: Body and accessories: Steel with black oxide finish. Piston rod: Steel hardened and chrome plated. Rod end button: Steel hardened with black oxide finish. Return spring: Zinc plated. For optimum heat dissipation do not paint outer body.

Capacity rating: For emergency use only applications it may be possible to exceed published energy per cycle (W₃) figures. Please consult ACE for further details.

Mounting: In any position Operating temperature

Adjustment

range: -12 °C to 85 °C

On request: Special oils, or for higher or lower impact velocities outside range shown above, or other options please consult ACE.

Rod Button

Return Spring

Piston Rod

Main Bearing

51

Heavy Industrial Shock Absorbers A1 1/2

Adjustable

Rear Flange -R

Clevis Mounting -C

Ē

19

Front Flange -F

Foot Mounting -S

12

Stroke

Foot mounting not available on 2" stroke models.

Due to limited force capacity the respective ability should be reviewed by ACE.

Install mechanical stop 2.5 mm to 3 mm before the end of stroke.

Ordering Example

Adjustable		•	_ ▲ ▲
Bore Size Ø 11/2"			
Stroke Length 2" = 50.8 mm			
Rear Flange Mounting			

Model Type Prefix

- A = self-contained with return spring (This is standard model)
- AA = air/oil return without return spring. Use only with external air/oil tank
- NA = self-contained without return spring
- SA = SA air/oil return with return spring. Use only with external air/oil tank

Dimensions

Type	Stroke	L1	L2	L3	L4	L5
	mm					
A11/2x2	50	195.2	54.2	-	-	277.8 - 328.6
A11/2x31/2	89	233	54.2	170	58.6	316.6 - 405.6
A11/2x5	127	271.5	54.2	208	58.6	354.8 - 481.8
A11/2x61/2	165	329	73	246	78	412 - 577

Capacity Chart

		Max. Energy C	Effective Weight me							
Туре	² W ₃ Nm/Cycle	³ W ₄ Self-Contained Nm/h	³ W ₄ with Air/Oil Tank Nm/h	me min. kg	me max. kg	Min. Return Force N	Max. Return Force N	Rod Reset Time s	Max. Side Load Angle °	Weight kg
A1 1/2x2	2 350	362 000	452 000	195	32 000	160	210	0.1	5	7.5
A11/2x31/2	4 150	633 000	791 000	218	36 000	110	210	0.25	4	8.9
A11/2x5	5 900	904 000	1 130 000	227	41 000	90	230	0.4	3	10.3
A11/2x61/2	7 700	1 180 000	1 469 000	308	45 000	90	430	0.4	2	12

¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it may be possible to exceed these max. capacity ratings. Please consult ACE for further details.

A 11/2 x 2 R

³ Figures for oil recirculation systems on request.

Heavy Industrial Shock Absorbers CA2 and A2

Self-Compensating and Adjustable

M100x2

19

A max

- 19

a 108 (120)

A max

Dimension in () for model A2 only

19

60

60

B max

- 19

53

Adjuster – model A2 only

Foot Mounting S100

□140

Adjuster - model A2 only

Dimensions of clevis mountings available on request. NOTE! For replacement of existing SAHS 2" foot mounted units order the old type foot mounting S2-A.

Ordering Example	CA 2 x 4-3 F
Self-Compensating	▲ ▲ ▲ ▲ ▲
Bore Size Ø 2"	
Stroke Length 4" = 102 mm	
Effective Weight Range Version	
Front Flange Mounting	

Ø35

Stroke

B max

Model Type Prefix

A, CA = self-contained with return spring (This is standard model) AA, CAA = air/oil return without return spring.

Use only with external air/oil tank

NA, CNA = self-contained without return spring SA, CSA = air/oil return with return spring. Use only with external air/oil tank

Dimensions

Туре	Stroke	A max	B max	С	D max	E
.,,,,	mm					
2x2	50	313	110	173	125	70
2x4	102	414	160	224	175	70
2x6	152	516	211	275	226	70
2x8	203	643	287	326	302	92
2x10	254	745	338	377	353	108

Capacity Chart CA2

	Мах	c. Energy Cap	oacity		¹ Effective	Weight me						
Туре	² W ₃	³ W ₄ Self-	3 W ₄ with	Soft			Hard	Min. Return	Max. Return	Rod Reset	Max. Side	Weight
	Nm/Cycle	Contained	Air/Oil Tank	-1	-2	-3	-4	Force	Force	Time	Load Angle	kg
		Nm/h	Nm/h	min kg max	min kg max	min kg max	min kg max	N	N	S	0	
CA2x2	3 600	1 100 000	1 350 000	700 - 2 200	1 800 - 5 400	4 500 - 13 600	11 300 - 34 000	210	285	0.25	3	12.8
CA2x4	7 200	1 350 000	1 700 000	1 400 - 4 400	3 600 - 11 000	9 100 - 27 200	22 600 - 68 000	150	285	0.5	3	14.8
CA2x6	10 800	1 600 000	2 000 000	2 200 - 6 500	5 400 - 16 300	13 600 - 40 800	34 000 - 102 000	150	400	0.6	3	16.9
CA2x8	14 500	1 900 000	2 400 000	2 900 - 8 700	7 200 - 21 700	18 100 - 54 400	45 300 - 136 000	230	650	0.7	3	19.3
CA2x10	18 000	2 200 000	2 700 000	3 600 - 11 000	9 100 - 27 200	22 600 - 68 000	56 600 - 170 000	160	460	0.8	3	22.8

Capacity Chart A2

-		Max. Energy Cap	acity	Effective	Weight me					
Туре	² W ₃ Nm/Cycle	³ W ₄ Self-Contained Nm/h	³ W ₄ with Air/Oil Tank Nm/h	me min. kg	me max. kg	Min. Return Force N	Max. Return Force N	Rod Reset Time s	Max. Side Load Angle °	
A2x2	3 600	1 100 000	1 350 000	250	77 000	210	285	0.25	3	
A2x4	9 000	1 350 000	1 700 000	250	82 000	150	285	0.5	3	
A2x6	13 500	1 600 000	2 000 000	260	86 000	150	400	0.6	3	
A2x8	19 200	1 900 000	2 400 000	260	90 000	230	650	0.7	3	
A2x10	23 700	2 200 000	2 700 000	320	113 000	160	460	0.8	3	

¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it may be possible to exceed these max. capacity ratings. Please consult ACE for further details.

³ Figures for oil recirculation systems on request.

Heavy Industrial Shock Absorbers CA3 and A3

Self-Compensating and Adjustable

Foot Mounting S130

Adjuster – Model A3 only

Dimensions of clevis mountings available on request. NOTE! For replacement of existing SAHS 3" foot mounted units please consult ACE.

A 3 x 8 R

Ordering Example

Adjustable	A	4	
Bore Size Ø 3"			
Stroke Length 8" = 203 mm			
Rear Flange Mounting			

Model Type Prefix

A, CA = self-contained with return spring (This is standard model)

AA, CAA = air/oil return without return spring. Use only with external air/oil tank

NA, CNA = self-contained without return spring SA, CSA = air/oil return with return spring.

Use only with external air/oil tank

Dimensions

Туре	Stroke	A max	B max	С	D max
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mm				
3x5	127	490.5	210	260	216
3x8	203	641	286	337	292
3x12	305	890	433	438	439

Capacity Chart CA3

	Max. Energy Capacity ¹ E					Weight me						
Type	² W ₃	3 W ₄ Self-	³ W ₄ with	Soft			Hard	Min. Return	Max. Return	Rod Reset	Max. Side	Weight
	Nm/Cycle	Contained	Air/Oil Tank	-1	-2	-3	-4	Force	Force	Time	Load Angle	kg
		Nm/h	Nm/h	min kg max	min kg max	min kg max	min kg max	N	N	S	0	
CA3x5	14 125	2 260 000	2 800 000	2 900 - 8 700	7 250 - 21 700	18 100 - 54 350	45 300 - 135 900	270	710	0.6	3	28.9
CA3x8	22 600	3 600 000	4 520 000	4 650 - 13 900	11 600 - 34 800	29 000 - 87 000	72 500 - 217 000	280	740	0.8	3	33.4
CA3x12	33 900	5 400 000	6 780 000	6 950 - 20 900	17 400 - 52 200	43 500 - 130 450	108 700 - 326 000	270	730	1.2	3	40.6

Capacity Chart A3

-		¹ Effective	Weight me							
Туре	² W ₃ Nm/Cycle	³ W ₄ Self-Contained Nm/h	³ W ₄ with Air/Oil Tank Nm/h	me min. kg	me max. kg	Min. Return Force N	Max. Return Force N	Rod Reset Time s	Max. Side Load Angle °	Wei k
A3x5	15 800	2 260 000	2 800 000	480	154 000	270	710	0.6	3	32
A3x8	28 200	3 600 000	4 520 000	540	181 500	280	740	0.8	3	38
A3x12	44 000	5 400 000	6 780 000	610	204 000	270	730	1.2	3	47

¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it may be possible to exceed these max. capacity ratings. Please consult ACE for further details.

³ Figures for oil recirculation systems on request.

Heavy Industrial Shock Absorbers CA4

Ø 27

Rear Flange - R

Front Flange -F

38 D max C max

55

Dimension in () for model CA4x16 only

6 Tapped Holes (Primary Mounting) FRP

Dimensions of clevis mountings available on request.

Ordering Example	CA 4 x 8-5 R
Self-Compensating	A A A A A
Bore Size Ø 4"	
Stroke Length 8" = 203 mm	
Effective Weight Range Version	
Rear Flange Mounting	

Foot Mounting -S

Ø2 22 22 F F max

Model Type Prefix

- = self-contained with return spring CA (This is standard model)
- CAA = air/oil return without return spring. Use only with external air/oil tank
- CNA = self-contained without return spring
- CSA = air/oil return with return spring. Use only with external air/oil tank

Dimensions CA/CSA

Туре	Stroke mm	А	В	С	D	E	F
4x6	152	716	278	678	240	444	256
4x8	203	818	329	780	291	495	307
4x16	406	1 300	608.5	1 262.6	569	698	585

Dimensions CAA

Туре	Stroke mm	A	В	С	D	E	F
4x6	152	666	228	628	190	444	206
4x8	203	767	278	729	240	495	256
4x16	406	1 174	482	1 138	444	698	460

Capacity Chart CA4

	Max. Ene	rgy Capacity		¹ Effective Weigh	t me					
2 W3	W ₄ Self-	W ₄ with	W4 with Oil	Soft		Hard	Min. Return	Max. Return	Rod Reset	Weight
n/Cycle	Contained	Air/Oil Tank	Recirculation	-3	-5	-7	Force	Force	Time	kg
	Nm/h	Nm/h	Nm/h	min kg max	min kg max	min kg max	N	N	S	
17 500	3 000 000	5 100 000	6 600 000	3 500 - 8 600	8 600 - 18 600	18 600 - 42 700	480	1 000	1.8	60
63 300	3 400 000	5 600 000	7 300 000	5 000 - 11 400	11 400 - 25 000	25 000 - 57 000	310	1 000	2.3	68
26 500	5 600 000	9 600 000	12 400 000	10 000 - 23 000	23 000 - 50 000	50 000 - 115 000	310	1 000	Ask	146
2 n, 17 2(W ₃ / Cycle 7 500 3 300 6 500	Wax. Ene W3 W4 Self- Contained Nm/h 7 500 3 000 000 3 300 3 400 000 6 500 5 600 000	Max. Energy Capacity W3 W4 Self- Contained W4 with Air/Oil Tank Nm/h Nm/h 7 500 3 000 000 5 100 000 3 300 3 400 000 5 600 000 6 500 5 600 000 9 600 000	Wax. Energy Capacity W3 W4 Self- Contained Nm/h W4 with Air/Oil Tank Nm/h W4 with Oil Recirculation Nm/h 7 500 3 000 000 5 100 000 6 600 000 3 000 3 400 000 5 600 000 7 300 000 6 500 5 600 000 12 400 000	Max. Energy Capacity ¹ Effective Weight W3 W4 Self- Contained W4 with Air/Oil Tank W4 with Oil Recirculation Soft 7 500 3 000 000 5 100 000 6 600 000 3 500 - 8 600 3 300 3 400 000 5 600 000 7 300 000 5 000 - 11 400 6 500 5 600 000 9 600 000 12 400 000 10 000 - 23 000	Max. Energy Capacity ¹ Effective Weight me W3 W4 Self- Contained Nm/h W4 with Air/Oil Tank Nm/h W4 with Recirculation Nm/h Soft 7 500 3 000 000 5 100 000 6 600 000 3 500 - 8 600 8 600 - 18 600 3 000 3 400 000 5 600 000 7 300 000 5 000 - 11 400 11 400 - 25 000 6 500 5 600 000 12 400 000 10 000 - 23 000 23 000 - 50 000	Max. Energy Capacity ¹ Effective Weight me W3 W4 Self- Contained Nm/h W4 with Air/Oil Tank Nm/h W4 with Recirculation Nm/h Soft Hard 7500 3 000 000 5 100 000 6 600 000 3 500 - 8 600 8 600 - 18 600 18 600 - 42 700 3 300 3 400 000 5 600 000 7 300 000 5 000 - 11 400 11 400 - 25 000 25 000 - 57 000 6 500 5 600 000 12 400 000 10 000 - 23 000 23 000 - 50 000 50 000 - 115 000	Max. Energy Capacity ¹ Effective Weight me W3 W4 Self- Contained Nm/h W4 with Air/Oil Tank Nm/h W4 with Oil Recirculation Nm/h Soft Hard Min. Return Force 7 500 3 000 000 5 100 000 6 600 000 3 500 - 8 600 8 600 - 18 600 18 600 - 42 700 480 3 300 3 400 000 5 600 000 7 300 000 5 000 - 11 400 11 400 - 25 000 25 000 - 57 000 310	Max. Energy Capacity ¹ Effective Weight me W3 W4 Self- Contained Nm/h W4 with Air/Oil Tank Nm/h W4 with Oil Recirculation Nm/h Soft Hard Min. Return Force Max. Return Force 7 500 3 000 000 5 100 000 6 600 000 3 500 - 8 600 8 600 - 18 600 18 600 - 42 700 480 1 000 3 300 3 400 000 5 600 000 7 300 000 5 000 - 11 400 11 400 - 25 000 25 000 - 57 000 310 1 000	Max. Energy Capacity ¹ Effective Weight me W3 W4 Self- Contained Nm/h W4 with Air/Oil Tank Nm/h W4 with Oil Recirculation Nm/h Soft Hard Min. Return Force Max. Return Fo

¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it may be possible to exceed these max. capacity ratings. Please consult ACE for further details.

Miniature Shock Absorbers

Application Examples

Constant resisting force

ACE miniature shock absorbers are the right alternative.

This pneumatic module for high precision, high speed motion intentionally abandoned pneumatic end-oftravel damping. The compact miniature shock absorbers of the type **MC25MH-NB** decelerate the linear motion safer and faster when reaching the end-oftravel position. They accept the moving load gently and decelerate it smoothly throughout the entire stroke length. Additional advantages: simpler construction, smaller pneumatic valves, lower maintenance costs as well as reduced compressed air consumption.

Miniature shock absorber in linear pneumatic module

ACE miniature shock absorbers optimise production with minimum expenditure.

The cycle rate for an assembly line producing electronic components was increased to 3600 units/hr by using ACE shock absorbers. Miniature shock absorbers type **SC190M-1** decelerate the rapid transfer movements on the production line and using soft damping methods optimise the pick up and set down of components. This soft deceleration technique has increased production and reduced maintenance on the portal and rotary actuator modules. The optional side load adaptor protects the shock absorber from high side load forces and increases the operating lifetime. Using ACE shock absorbers reduces maintenance costs by 50% and running costs by 20%, diminishing energy consumption.

Optimised production in the electronics industry

Soft end-of-travel damping on rotary movements

Industrial Shock Absorbers

Application Examples

Safe swiveling

ACE industrial shock absorbers offer safety to spare for swiveling or braking of large telescope.

The optical system ot this telescope for special observations is moveable in two space coordinates. The structure in which the telescope is mounted weighs 15000 kg and consists of a turntable with drives and two wheel disks rotating on bearings. It enables a rotation by \pm 90° from horizon to horizon. To safeguard the telescope in case of overshooting the respective swiveling limits, industrial shock absorbers of the type **ML3325M** are used as braking elements. Should the telescope inadvertently overshoot the permissible swivel range, they

will safely damp the travel of the valuable telescope.

59

Perfect overshoot protection for precision telescope

ACE industrial shock absorbers optimize portal for machine loading and increase productivity.

This device driven by piston rod-less pneumatic cylinders, in which two gripper slides are moving independently of each other at speeds of 2 to 2.5 m/sec., is equipped with industrial shock absorbers as brake systems. Their function is to stop a mass of 25 kg up to 540 times per hour. The model **MC3350M-1-S** was chosen for this application, allowing easy and extremely accurate adjustment of the end positions of the adjustable limit stops. In comparison to brake systems with other function principles, shock absorbers allow higher travel speeds and shorter cycle sequences.

Industrial shock absorbers optimize portal operation

Quicker, gentle positioning

capacity below.

range: 0 °C to 66 °C

Mounting: In any position **Operating temperature**

60

Safety Shock Absorbers SCS300 and 650

Ordering Example

SCS300-Dxxxx

Safety Shock Absorber	4									
Size 300, Thread M20										
(Size 650, Thread M25)										
Identification No. assigned by ACE										
Please indicate identification no. in case of										
replacement order										

Complete Details Required when Ordering

Moving load	m	(kg)
Impact velocity range	V	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Р	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 13 to 15.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Dimensions and Capacity Chart												
				Max. Energy Capacity								
Type Part Number	Stroke mm	A max	В	Self-Compensating W ₃ Nm/Cycle	Min. Return Force N	Max. Return Force N	Max. Side Load Angle °	Weight kg				
SCS300	15	105.5	66.5	292	8	18	2	0.175				
SCS650	23	140	86	420	11	33	2	0.350				

Safety Shock Absorbers SCS33 to 64

of the MAGNUM range, ACE introduces the SCS33 to SCS64 series of safety shock absorbers. Designed to provide machine protection in an emergency runaway situation the SCS33 to SCS64 series provide a cost effective method of protecting vital machinery in emergency stop situations. Specially optimised orificing design provides extremely high capacity in a compact envelope size making them ideal for critical applications on portal gantry systems, automatic transfer machines and robot systems where an emergency runaway could otherwise result in expensive damage or danger. With up to 300% higher capacity than other shock absorber designs the SCS33 to 64 range provides true linear deceleration protecting vital equipment at an affordable cost. Optional rod sensor available for indicating the complete retraction of the piston rod.

62

Based on the innovative design concepts

Integrated Positive Stop

Main Bearing

Fully Threaded Outer Body

Membrane Accumulator

Piston
Piston Ring

One Piece Pressure Chamber with Optimised Metering Orifices to Suit Specific Application

Impact cycles per hour: max. 1

Life expectancy: Self-compensating version: max. 1000 cycles. Optimised version: max. 5 cycles.

Impact velocity range: On request

 $\label{eq:operating fluid: Automatic Transmission Fluid (ATF) at 42 cSt.$

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with black oxide finish. Piston rod: Steel hardened and chrome plated. Rod end button: Hardened steel with black oxide finish. Return Spring: Zinc plated or plastic-coated.

Energy capacity W₃: At max. side load angle do not exceed 80% of rated max. energy capacity below.

Mounting: In any position

Heavy Duty

One-Piece Steel Outer

Body

Unique

Identification Code Number

Operating temperature range: -12 °C to 70 °C. Higher temperatures on request.

In creep speed: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

ACE

Safety Shock Absorbers SCS33

Standard Dimensions

S33

Side Foot Mounting Kit

S33 = 2 flanges + 4 screws M6x40, DIN 912 Because of the thread pitch the fixing holes for the second foot mount should only be drilled and tapped after the first foot mount has been fixed in position.

Tightening torque: 11 Nm (screws) Clamping torque: > 90 Nm

Ordering Example

Safety Shock Absorber _____ Thread Size M33 _____ Max. Stroke without Positive Stop 50 mm ___ Mounting Style: Foot _____

Identification No. assigned by ACE _____ Please indicate identification no. in case of replacement order

SCS33-50-S-Dxxxx

Complete Details Required when Ordering

Moving load	m	(kg)
Impact velocity range	v	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Р	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 13 to 15.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Dimensions and Capacity Chart

							Max. Energ	gy Capacity				
Type Part Number	Stroke mm	A max	В	C min	C max	D	Self-Compensating W ₃ Nm/Cycle	Optimised Version W ₃ Nm/Cycle	Min. Return Force N	Max. Return Force N	Max. Side Load Angle	Weight kg
SCS33-25	23	138	83	25	60	68	310	500	45	90	3	0.45
SCS33-50	48.5	189	108	32	86	93	620	950	45	135	2	0.54

For other stroke lengths, special options (such as higher or lower impact velocity etc.), please consult ACE.

63

NM33

Ø39,6

Locking Ring

Install with 4 machine screws Tightening torque: 11 Nm Clamping torque: > 90 Nm

Square Flange

ACE

Safety Shock Absorbers SCS45

NM45

Ø 55,6

Locking Ring

Standard Dimensions

S45

Side Foot Mounting Kit

S45 = 2 flanges + 4 screws M8x50, DIN 912 Because of the thread pitch the fixing holes for the second foot mount should only be drilled and tapped after the first foot mount has been fixed in position.

Ordering Example

Safety Shock Absorber
Thread Size M45
Max. Stroke without Positive Stop 50 mm
Mounting Style: Foot
Identification No. assigned by ACE
Please indicate identification no. in case of
replacement order

SCS45-50-S-Dxxxx

Tightening torque: 27 Nm (screws) Clamping torque: > 350 Nm

Complete Details Required when Ordering

Moving load	m	(kg)
Impact velocity range	V	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Р	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 13 to 15.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Dimensions and Capacity Chart

							Max. Energ	y Capacity				
Type Part Number	Stroke mm	A max	В	C min	C max	D	Self-Compensating W ₃ Nm/Cycle	Optimised Version W ₃ Nm/Cycle	Min. Return Force N	Max. Return Force N	Max. Side Load Angle	Weight kg
SCS45-25	23	145	95	32	66	66	680	1 200	70	100	3	1.13
SCS45-50	48.5	195	120	40	92	91	1 360	2 350	70	145	2	1.36
SCS45-75	74	246	145	50	118	116	2 040	3 500	50	180	1	1.59

For other stroke lengths, special options (such as higher or lower impact velocity etc.), please consult ACE.

QF45

Square Flange

Install with 4 machine screws Tightening torque: 27 Nm Clamping torque: > 200 Nm

Safety Shock Absorbers SCS64

NM64

Ø76

Locking Ring

Standard Dimensions

S64

Side Foot Mounting Kit

S64 = 2 flanges + 4 screws M10x80, DIN 912 Because of the thread pitch the fixing holes for the second foot mount should only be drilled and tapped after the first foot mount has been fixed in position.

Tightening torque: 50 Nm (screws) Clamping torque: > 350 Nm

Ordoring	Example
Urdering	Example

Safety Shock Absorber _____ Thread Size M64 _____ Max. Stroke without Positive Stop 50 mm __ Mounting Style: Foot _____

Identification No. assigned by ACE _____ Please indicate identification no. in case of replacement order

SCS64-50-S-Dxxxx

Complete Details Required when Ordering

Moving load	m	(kg)
Impact velocity range	V	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Ρ	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 13 to 15.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Dimensions and Capacity Chart

							Max. Energ	y Capacity				
Type Part Number	Stroke mm	A max	В	C min	C max	D	Self-Compensating W ₃ Nm/Cycle	Optimised Version W ₃ Nm/Cycle	Min. Return Force N	Max. Return Force N	Max. Side Load Angle °	Weight kg
SCS64-50	48.5	225	140	50	112	100	3 400	6 000	90	155	3	3.18
SCS64-100	99.5	326	191	64	162	152	6 800	12 000	105	270	2	4.20
SCS64-150	150	450	241	80	212	226	10 200	18 000	75	365	1	5.65

For other stroke lengths, special options (such as higher or lower impact velocity etc.), please consult ACE.

QF64 ⊣ ⊢_ ø11

Square Flange

Install with 4 machine screws Tightening torque: 50 Nm Clamping torque: > 210 Nm

Safety Shock Absorbers SCS38 to 63

ACE safety shock absorbers are selfcontained and maintenance-free. They are designed for emergency deceleration and are an economic alternative to industrial shock absorbers. The SCS series units are available with operating strokes up to 1200 mm and are specially orificed to provide a smooth constant deceleration throughout their entire stroke length. The internal hydraulic pressure and thus the braking force, is maintained at a constant safe level to bring the fast moving load gently to rest in an emergency. Applications specially include conveyor systems, automated storage, cranes and heavy machines. Optional rod sensor available for indicating the complete extension of the piston rod.

Rod Button

Piston Rod

- Positive Stop

Main Bearing

Gas Chamber

Bladder Accumulator

Outer Body

Pressure Chamber

Metering Orifices

Function: In the normal "ready" condition the piston rod is fully extended. When the impact load strikes the absorber the hydraulic oil behind the piston is forced out through a series of metering orifices. The number of metering orifices in action reduces proportionally though the stroke and the load velocity is thereby smoothly reduced to zero. The internal pressure and thus the reaction force (Q) remains constant throughout the entire stroke length. The displaced oil is stored in the bladder accumulator. The integrated gas chamber, containing low pressure nitrogen, provides the return force to reset the rod to its extended position and functions as an accumulator for the hydraulic oil displaced during the operation.

Material: Steel body with black oxide finish. Piston rod hard chrome plated.

Energy capacity W₃: At max. side load angle do not exceed 80% of rated max. energy capacity below.

Filling pressure: Approx. 2 bar Operating temperature range: -12 °C to 66 °C

In creep speed: It is possible to use up to approx. 60% of the buffer stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

ssue 4.2009 Specifications subject to change

Rear Flange - R

Front Flange -F

67

Foot Mounting -S

Ordering Example

SCS38-400-F-X

Safety Shock Absorber		•	•	•	4
Bore Size Ø 38 mm					
Stroke 400 mm					
Mounting Style: Front Flange					
Identification No. assigned by ACE					
Please indicate identification no in case	of				

replacement order

Complete D	etails Requ	uired when	Ordering
------------	-------------	------------	----------

Moving load	m	(kg)
Impact velocity range	v	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Р	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 13 to 15.

Technical Data

Impact velocity range: 0.9 to 4.6 m/s Reacting force Q: At max. capacity rating = 80 kN max.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Dimensions and Capacity Chart

			-	-		Max. Energy Capacity						
Type Part Number	Stroke mm	A max	В	D	E max	W ₃ Nm/Cycle	Min. Return Force	Max. Return Force	Max. Side Lo Mountin	oad Angle ° g Style	Weigh Mountin	nt kg g Style
							N	N	Fað	R	F&R	5
SCS38-50	50	270	205	175	80	3 600	600	700	5	4	12	13
SCS38-100	100	370	255	225	132	7 200	600	700	5	4	14	15
SCS38-150	150	470	305	275	180	10 800	600	700	5	4	16	17
SCS38-200	200	570	355	325	230	14 400	600	700	5	4	18	19
SCS38-250	250	670	405	375	280	18 000	600	700	4.7	3.7	20	21
SCS38-300	300	785	470	440	330	21 600	600	700	3.9	2.9	22	23
SCS38-350	350	885	520	490	380	25 200	600	700	3.4	2.4	24	25
SCS38-400	400	1 000	585	555	430	28 800	600	700	3	2	26	27
SCS38-500	500	1 215	700	670	530	36 000	600	700	2.4	1.4	30	31
SCS38-600	600	1 430	815	785	630	43 200	600	700	1.9	0.9	34	35
SCS38-700	700	1 645	930	900	730	50 400	600	700	1.6	0.6	38	39
SCS38-800	800	1 860	1 045	1 015	830	57 600	600	700	1.3	0.3	43	44

For other stroke lengths, special options (such as higher or lower impact velocity etc.), please consult ACE.

Rear Flange - R

Front Flange - F

68

Foot Mounting -S

Ordering Example

SCS50-400-F-X

Safety Shock Absorber		•	•	4	٢
Bore Size Ø 50 mm					
Stroke 400 mm					
Mounting Style: Front Flange					
Identification No. assigned by ACE					
Place indicate identification no in ca	co of				

Please indicate identification no. in case of replacement order

Complete	Details	Required	when	Ordering
oompiete	Details	nequirea	which	Clacing

Moving load	m	(ka)
		(19)
Impact velocity range	V	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Р	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 13 to 15.

Technical Data

Impact velocity range: 0.6 to 4.6 m/s

Reacting force Q: At max. capacity rating = 160 kN max.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Dimensions and Capacity Chart

		-		-		Max. Energy Capacity						
Type Part Number	Stroke mm	A max	В	D	E max	W ₃ Nm/Cycle	Min. Return Force	Max. Return Force	Max. Side L Mountin	oad Angle ° ng Style	Weig Mountir	ht kg ng Style
							N	N	F & S	R	F & R	S
SCS50-100	100	390	270	235	138	14 000	1 000	1 200	5	4	22	23
SCS50-150	150	490	320	285	188	21 000	1 000	1 200	5	4	25	26
SCS50-200	200	590	370	335	238	28 000	1 000	1 200	5	4	27	28
SCS50-250	250	690	420	385	288	35 000	1 000	1 200	4.5	3.5	30	31
SCS50-300	300	805	485	450	338	42 000	1 000	1 200	3.8	2.8	33	34
SCS50-350	350	905	535	500	388	49 000	1 000	1 200	3.3	2.3	35	37
SCS50-400	400	1 020	600	565	438	56 000	1 000	1 200	2.9	1.9	38	40
SCS50-500	500	1 235	715	680	538	70 000	1 000	1 200	2.3	1.3	44	45
SCS50-600	600	1 450	830	795	638	84 000	1 000	1 200	1.9	0.9	50	51
SCS50-700	700	1 665	945	910	738	98 000	1 000	1 200	1.6	0.6	55	57
SCS50-800	800	1 880	1 060	1 025	838	112 000	1 000	1 200	1.3	0.3	61	63
SCS50-1000	1 000	2 310	1 290	1 255	1 038	140 000	1 000	1 200	1	0	72	74

For other stroke lengths, special options (such as higher or lower impact velocity etc.), please consult ACE.

Ø 70

Stroke

20

Rear Flange - R

Front Flange - F

69

Foot Mounting -S

Ordering Example

SCS63-400-F-X

Safety Shock Absorber		•	4	
Bore Size Ø 63 mm				
Stroke 400 mm				
Mounting Style: Front Flange				
Identification No. assigned by ACE				
Please indicate identification no. in case of	of			

replacement order

Complete De	etails Required	d when Orderi	ng
-------------	-----------------	---------------	----

Moving load	m	(kg)
Impact velocity range	v	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Р	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 13 to 15.

Technical Data

Impact velocity range: 0.5 to 4.6 m/s Reacting force Q: At max. capacity rating = **210 kN max.**

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Dimensions and Capacity Chart

				-		Max. Energy Capacity						
Type Part Number	Stroke mm	A max	В	D	E max	W ₃ Nm/Cycle	Min. Return Force N	Max. Return Force N	Max. Side L Mountin F & S	oad Angle ° Ig Style R	Weigl Mountir F & R	ht kg ng Style S
SCS63-100	100	405	285	240	143	18 000	1 500	2 500	5	4	29	32
SCS63-150	150	505	335	290	193	27 000	1 500	2 500	5	4	32	35
SCS63-200	200	605	385	340	243	36 000	1 500	2 500	5	4	35	38
SCS63-250	250	705	435	390	293	45 000	1 500	2 500	5	4	38	42
SCS63-300	300	805	485	440	343	54 000	1 500	2 500	5	4	41	45
SCS63-350	350	925	555	510	393	63 000	1 500	2 500	5	4	45	49
SCS63-400	400	1 025	605	560	443	72 000	1 500	2 500	5	4	48	52
SCS63-500	500	1 245	725	680	543	90 000	1 500	2 500	4.2	3.2	55	60
SCS63-600	600	1 445	825	780	643	108 000	1 500	2 500	3.4	2.4	62	66
SCS63-700	700	1 665	945	900	746	126 000	1 500	2 500	2.9	1.9	69	73
SCS63-800	800	1 865	1 045	1 000	843	144 000	1 500	2 500	2.5	1.5	75	79
SCS63-1000	1 000	2 285	1 265	1 220	1 043	180 000	1 500	2 500	1.9	0.9	89	93
SCS63-1200	1 200	2 705	1 485	1 4 4 0	1 243	216 000	1 500	2 500	14	0.4	102	106

For other stroke lengths, special options (such as higher or lower impact velocity etc.), please consult ACE.

Safety Shock Absorbers CB63/EB63 to 160

70

ACE safety shock absorbers are selfcontained and maintenance-free. They are designed for emergency deceleration and are an economic alternative to industrial shock absorbers. The primary oil seals are protected inside the main body and only a wiper seal is necessary on the piston rod. Dirt or contamination on the piston rod does not cause oil leakage or failure as is often the case with conventional buffers. The integrated gas chamber enables the CB series safety shock absorbers to provide return forces of up to 63 kN. This high return force is necessary for multiple-bridge cranes where the buffers must separate the bridges after an emergency collision. Normal buffers would remain compressed after such a collision and would not be capable of accepting further impacts. The robust, large-dimensioned piston rod bearing system, is designed for very heavy duty use and is equivalent to that used in other buffers 80% larger in size. The CB series units are custom-orificed to suit your specific application and provide a smooth constant deceleration throughout their complete stroke length.

The **new EB-series** was designed where lower return forces in comparison

to the CB version are needed.

Rod Button Spring Package (EB-Series) Piston Tube Gas Chamber Positive Stop Rod Wiper Mounting Flange

Hydraulic Oil
Metering Orifices

Pressure Chamber

Function: In the normal "ready" condition the piston rod is fully extended. When the impact load strikes the absorber the hydraulic oil behind the piston is forced through a series of metering orifices. The number of metering orifices in action reduces proportionally through the stroke and the load velocity is thereby reduced to zero. The internal pressure and thus the reaction force (Q) remains constant throughout the entire stroke length. The displaced oil is directed inside the piston rod where a separator piston keeps the oil and the nitrogen gas apart. The integrated gas chamber, containing low pressure nitrogen, provides the high return force to reset the rod to its extended position and generates the high return forces to comply with crane installations. In the EB design the rod return occurs via a spring package in the piston tube.

Impact velocity range: 0.5 to 4.6 m/s

Material: Steel body with black oxide finish. Piston rod hard chrome plated.

Operating temperature range: -12 °C to 66 °C

The initial fill pressure governs the rod return force.

In creep speed: The shock absorber can be pushed through its stroke.

ssue 4.2009 Specifications subject to change

For Crane Installations and other Emergency Uses

Front Flange -F

Rear Flange - R

Ordering Example

Technical Data

Ordering Example	CB63-400-F-X
Safety Shock Absorber	^ ↑ ↑ ↑ ↑
Bore Size Ø 63 mm	
Stroke 400 mm	
Mounting Style: Front Flange	
Identification No. assigned by ACE	
Please indicate identification no. in ca replacement order	se of

Complete Details Required when Ordering

Moving load	m	(kg)
Impact velocity range	V	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Р	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 13 to 15.

Model Type Prefix

CB = rod return via gas chamber

EB = rod return via additional spring package

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Reacting force Q: At max. capacity rating = 187 kN max.

Dimensions and Capacity Chart CB63

			-	-	Max. Energy Capacity	¹ Effective	e Weight me				
Type Part Number	Stroke mm	A max	В	С	W ₃ Nm/Cycle	me min. kg	me max. kg	Min. Return Force N	Max. Return Force N	Max. Side Load Angle	Weight kg
CB63-100	100	420	288	192	16 000	900	128 000	1 500	16 000	3.5	12.7
CB63-200	200	700	468	292	32 000	1 800	256 000	1 500	21 000	3	16.7
CB63-300	300	980	648	392	48 000	2 700	384 000	1 500	24 000	2.5	20.8
CB63-400	400	1 260	828	492	64 000	3 700	512 000	1 500	25 000	2	24.8
CB63-500	500	1 540	1 008	592	80 000	4 700	640 000	1 500	26 000	1.5	28.8

Dimensions and Capacity Chart EB63

				,							
					Max. Energy Capacity	¹ Effective	Weight me				
Type Part Number	Stroke mm	A max	В	С	W ₃ Nm/Cycle	me min. kg	me max. kg	Min. Return Force N	Max. Return Force N	Max. Side Load Angle °	Weight kg
EB63-100	100	420	288	192	16 000	900	128 000	700	6 900	3.5	12.7
EB63-200	200	700	468	292	32 000	1 800	256 000	770	9 300	3	16.7
EB63-300	300	980	648	392	48 000	2 700	384 000	830	10 600	2.5	20.8
EB63-400	400	1 260	828	492	64 000	3 700	512 000	600	11 100	2	24.8
EB63-500	500	1 540	1 008	592	80 000	4 700	640 000	670	12 000	1.5	28.8

¹ The correct effective weight range for your application will be calculated by ACE and should fall within this band. Special options: Special oils, special flanges, additional corrosion protection etc. available on request.

Safety Shock Absorbers CB/EB100

For Crane Installations and other Emergency Uses

Front Flange - F

Rear Flange - R

Ordering Example

Technical Data

CB100-400-F-X

o i			
Safety Shock Absorber	1	▶ ♠	
Bore Size Ø 100 mm			
Stroke 400 mm			
Mounting Style: Front Flange			
Identification No. assigned by ACE			
Please indicate identification no. in case of			
replacement order			

Complete Details Required when Ordering

Moving load	m	(kg)
Impact velocity range	v	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Ρ	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 13 to 15.

Model Type Prefix

CB = rod return via gas chamber

EB = rod return via additional spring package

The calculation and selection of the correct ACE safety

shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Reacting force Q: At max. capacity rating = 467 kN max.

Dimensions and Capacity Chart CB100												
					Max. Energy Capacity	¹ Effective	Weight me					
Type Part Number	Stroke mm	A max	В	С	W ₃ Nm/Cycle	me min. kg	me max. kg	Min. Return Force N	Max. Return Force N	Max. Side Load Angle °	Weight kg	
CB100-200	200	735	495	320	80 000	6 900	640 000	3 900	40 000	4	42.5	
CB100-300	300	1 005	665	420	120 000	10 300	960 000	3 900	50 000	3.5	50.8	
CB100-400	400	1 275	835	520	160 000	13 800	1 280 000	3 900	57 000	3	59.1	
CB100-500	500	1 545	1 005	620	200 000	17 200	1 600 000	3 900	63 000	2.5	67.5	
CB100-600	600	1 815	1 175	720	240 000	20 700	1 920 000	3 900	68 000	2	75.8	

Dimensi	Dimensions and Capacity Chart EB100												
					Max. Energy Capacity	¹ Effective	Weight me						
Type Part Number	Stroke mm	A max	В	С	W ₃ Nm/Cycle	me min. kg	me max. kg	Min. Return Force N	Max. Return Force N	Max. Side Load Angle °	Weight kg		
EB100-200	200	735	495	320	80 000	6 900	640 000	1 200	8 900	4	42.5		
EB100-300	300	1 005	665	420	120 000	10 300	960 000	950	14 100	3.5	50.8		
EB100-400	400	1 275	835	520	160 000	13 800	1 280 000	1 190	18 200	3	59.1		
EB100-500	500	1 545	1 005	620	200 000	17 200	1 600 000	930	20 800	2.5	67.5		
EB100-600	600	1 815	1 175	720	240 000	20 700	1 920 000	1 170	23 300	2	75.8		

¹ The correct effective weight range for your application will be calculated by ACE and should fall within this band. Special options: Special oils, special flanges, additional corrosion protection etc. available on request.

For Crane Installations and other Emergency Uses

Front Flange - F

Rear Flange - R

Ordering Example

CB160-400-F-X	K
---------------	---

Safety Shock Absorber		•	•	
Bore Size Ø 160 mm				
Stroke 400 mm				
Mounting Style: Front Flange				
Identification No. assigned by ACE				
Please indicate identification no. in case	of			
replacement order				
-				

Complete Details Required when Ordering

Moving load	m	(kg)
Impact velocity range	V	(m/s) max.
Creep speed	VS	(m/s)
Motor power	Р	(kW)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	
Creep speed Motor power Stall torque factor Number of absorbers in parallel	v VS P ST n	(m/s) (m/s) (kW) (normal 2.5

or technical data according to formulae and calculations on page 13 to 15.

Technical Data

Reacting force Q: At max. capacity rating = 700 kN max.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Model Type Prefix

CB = rod return via gas chamber

EB = rod return via additional spring package

Dimensi	Dimensions and Capacity Chart CB160													
					Max. Energy Capacity	¹ Effective	Weight me							
Type Part Number	Stroke mm	A max	В	С	W ₃ Nm/Cycle	me min. kg	me max. kg	Min. Return Force N	Max. Return Force N	Max. Side Load Angle	Weight kg			
CB160-400	400	1 400	940	600	240 000	22 700	1 920 000	9 600	63 000	4	154.6			
CB160-600	600	2 000	1 340	800	360 000	34 000	2 880 000	9 600	63 000	3	188.0			
CB160-800	800	2 600	1 740	1 000	480 000	45 400	3 840 000	9 600	63 000	2	221.3			

Dimensi	Dimensions and Capacity Chart EB160													
					Max. Energy Capacity	¹ Effective	Weight me							
Type Part Number	Stroke mm	A max	В	С	W ₃ Nm/Cycle	me min. kg	me max. kg	Min. Return Force N	Max. Return Force N	Max. Side Load Angle °	Weight kg			
EB160-400	400	1 400	940	600	240 000	22 700	1 920 000	1 870	18 100	4	154.6			
EB160-600	600	2 000	1 340	800	360 000	34 000	2 880 000	2 100	18 800	3	188.0			
EB160-800	800	2 600	1 740	1 000	480 000	45 400	3 840 000	2 400	19 500	2	221.3			

¹ The correct effective weight range for your application will be calculated by ACE and should fall within this band. **Special options:** Special oils, special flanges, additional corrosion protection etc. available on request.

Manual and Maintenance Instructions for Safety Shock Absorbers Type SCS and CB

ACE security shock absorbers are high-quality products. To achieve long-lasting and trouble free operating life please read the following instructions before installation.

Manual

Inner Pressure Tube Characteristics

The inner pressure tube is individually designed and manufactured for each specific application.

When several safety shock absorbers of the same size but with different metering orifice patterns are used in one system it is important that the mounting positions are not mixed up. Safety shock absorbers have individually designed orifice patterns depending upon application and therefore must only be installed in correct position.

The calculation and selection of the correct safety shock absorbers should be performed or checked by ACE.

Mounting

To mount the shock absorber, we recommend the use of original ACE mounting accessories shown in catalogue.

The mounting of each shock absorber must be exactly positioned so that the reaction force (Q) can be adequately transmitted into the mounting structure.

ACE recommends installation via the **front flange -F** mounting style that ensures the maximum protection against buckling. The damper must be mounted so that the moving loads are decelerated with the least possible side loading to the piston rod. The maximum permissable side load angles are detailed in our current catalogue.

The entire stroke length must be used for deceleration because only using part of the stroke can lead to overstressing and damage to the unit.

Mounting style front flange -F

Safety Shock Absorber SCS

Safety Shock Absorber CB

Environmental Requirements

The permissible temperature range for each shock absorber type can be found in our current catalogue.

CAUTION: Usage outside the specified temperature range can lead to premature breakdown and damage of of the shock absorbers which can then result in severe system damage or machine failures.

Trouble free operation outdoors or in damp environments is only warranted if the dampers are coated with a specific corrosion protection finish.

Initial Start-Up Checks

First impacts on the shock absorber should only be tried after correctly mounting and with reduced impact speeds

and – if possible – with reduced load. Differences between calculated and actual operating data can then be detected early on, and damage to your system can be avoided. If the shock absorbers were selected on calculated data that does not correspond to the maximum possible loading (i.e. selection based on drive power being switched off or at reduced impact speed) then these restricted impact conditions must not be exceeded during initial testing or subsequent use of the system. Otherwise you risk damaging the shock absorbers and/or your machine by overstressing materials. After the initial trial check that the piston rod fully extends again and that there are no signs of oil leakage. Also check that the mounting hardware is still securely tightened. You need to satisfy yourself that no damage has occurred to the piston rod, the body, or the mounting hardware.

Fixed Mechanical Stop

Safety shock absorbers do not need an external mechanical stop. The stroke of the safety shock absorber is limited by the contact of the rod end button onto the front body of the shock absorber (with type SCS300 to SCS650 and SCS33 to SCS64 by the load contacting the integral or additional stop collar).

What Needs to be Checked after a Full Load Impact?

Safety shock absorbers that were originally checked only at reduced speed or load need to be checked again after a full load impact (i. e. emergency use) has occurred. Check that the piston rod fully extends to its full out position, that there are no signs of oil leakage and that the mounting hardware is still securely fixed. You need to satisfy yourself that no damage has occurred to the piston rod, the body, or the mounting hardware. If no damage has occurred, the safety shock absorber can be put back into normal operation (see initial start-up).

Maintenance

Safety shock absorbers are sealed systems and do not need special maintenance. Safety shock absorbers that are not used regularly (i.e. that are intended for emergency stop systems) should be checked within the normal time frame for safety checks, but **at least once a year**. At this time special attention must be paid to checking that the piston rod resets to its fully extended position, that there is no oil leakage and that the mounting brackets are still secure and undamaged. The piston rod must not show any signs of damage. Safety shock absorbers that are **in use regularly** should be checked **every three months**.

Repair Notice

If any damage to the shock absorber is detected or if there are any doubts as to the proper functioning of the unit please send the unit for service to ACE. Alternatively contact your local ACE office for further advice.

Safety Shock Absorbers

Application Examples

Controlled emergency stop

ACE safety shock absorbers protect precision assembly jigs for the aircraft industry.

The basic mount of this coordinate measuring machine for the production of parts in the aircraft industry is made of granite and must not be damaged. To avoid damage from operating errors or mishandling, all movement axes were equipped with safety shock absorbers of the type **SCS45-50**.

If the turntables malfunction the safety shock absorbers decelerate the loads before expensive damage can occur to the granite measuring tables.

75

Optimally protected turntable

ACE safety shock absorbers defy the forces of nature.

In order to efficiently protect against falling rocks, a net is put through its paces under realistic conditions. Large sized **SCS-80-500-F** type safety shock absorbers with additional crash sleeves safeguard the high durability of the test construction. These models provide the necessary reserves for energy absorption – especially with regard to the supporting forces which must be considered during the very high collision speed imposed on a stone transportation car.

Complete protection on a test facility

Downhill security

TUBUS-Series Type TA

Profile Damper Axial Damping

The **profile damper type TA** from the innovative ACE TUBUS series is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer.

As a result of the degressive damping characteristic it provides a high energy absorption at the beginning of its stroke. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to 90 °C.

The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100% of the incoming energy.

The **space-saving package size** ranges from \emptyset 12 mm up to \emptyset 116 mm and is very simply and quickly installed with the supplied specially stepped

mounting screw. The TA series have been specially developed to provide **maximum energy capacity** in the **minimum mounting space** in the capacity range from 2 Nm up to 2000 Nm.

Life expectancy is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.

Impact velocity range: Up to max. 5 m/s

Environment: Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the W_3 rating by +40 %.

Mounting: In any position

Dynamic force range: 980 N to 82000 N

Operating temperature range: -40 °C to 90 °C

Energy absorption: 40 % to 66 %

Material hardness rating: Shore 55D

Max. torque:

M3: 2 Nm M4: 4 Nm M5: 6 Nm M6: 10 Nm M8: 25 Nm M12: 85 Nm M16: 210 Nm

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

TUBUS-Series Type TA

Profile Damper Axial Damping

The calculation and selection of the required profile damper should be carried out or be approved by ACE.

Dimensions and Capacity Chart

Туре	¹ W3 Nm/Cycle	² W ₃ Nm/Cycle	Max. Stroke mm	D	L ₁	М	L ₂	d ₁	d ₂	Weight kg
TA12-5	2	3	5	12	3	M3	11	15	11	0.0014
TA17-7	6	8.5	7	17	4	M4	16	22	15	0.0040
TA21-9	10	14	9	21	5	M5	18	26	18	0.0068
TA22-10	15	21	10	22	6	M6	19	27	19	0.0084
TA28-12	30	42	12	28	6	M6	26	36	25	0.0164
TA34-14	50	70	14	34	6	M6	30	43	30	0.0242
TA37-16	65	91	16	37	6	M6	33	48	33	0.0306
TA40-16	80	112	16	40	8	M8	35	50	34	0.0398
TA43-18	100	140	18	43	8	M8	38	55	38	0.0512
TA47-20	130	182	20	47	12	M12	41	60	41	0.0800
TA50-22	160	224	22	50	12	M12	45	64	44	0.0846
TA54-22	190	266	22	54	12	M12	47	68	47	0.0966
TA57-24	230	322	24	57	12	M12	51	73	50	0.1160
TA62-25	280	392	25	62	12	M12	54	78	53	0.1318
TA65-27	350	490	27	65	12	M12	58	82	57	0.1532
TA70-29	400	560	29	70	12	M12	61	86	60	0.1744
TA72-31	500	700	31	72	16	M16	65	91	63	0.2568
TA80-32	600	840	32	80	16	M16	69	100	69	0.3116
TA82-35	700	980	35	82	16	M16	74	105	72	0.3506
TA85-36	800	1 120	36	85	16	M16	76	110	75	0.3914
TA90-38	900	1 260	38	90	16	M16	80	114	78	0.4138
TA98-40	1 200	1 680	40	98	16	M16	86	123	85	0.5130
TA116-48	2 000	2 800	48	116	16	M16	101	146	98	0.8030

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

Characteristics of Type TA37-16

Energy-Stroke Characteristic (dynamic)

Force-Stroke Characteristic (dynamic) (with impact velocity over 0.5 m/s)

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With the impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 8.8 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 0.5 m/s) and static ($v \le 0.5 \text{ m/s}$) characteristics of all types are available on request.

TUBUS-Series Type TS

Profile Damper Axial Soft Damping

The **profile damper type TS** from the innovative ACE TUBUS series is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer.

As a result of the almost linear damping charcteristic it provides a very smooth energy absorption with minimum reaction loads on the machine. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to 90 °C.

The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100% of the incoming energy.

The **space saving package size** ranges from \emptyset 14 mm up to \emptyset 107 mm and is very simply and quickly installed with the supplied specially stepped mounting screw.

The TS series have been specially developed to provide **maximum energy capacity** in the minimum mounting space in the capacity range from 2 Nm up to 910 Nm.

Life expectancy is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.

Impact velocity range: Up to max. 5 m/s

Environment: Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the W_3 rating by +40 %.

Mounting: In any position

Dynamic force range: 670 N to 24 000 N

Operating temperature range: -40 °C to 90 °C

Energy absorption: 26 % to 56 %

Material hardness rating: Shore 40D

Max. torque:

M4: 4 Nm M5: 6 Nm M6: 10 Nm M12: 85 Nm M16: 210 Nm

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

ssue 4.2009 Specifications subject to change

TUBUS-Series Type TS

Profile Damper Axial Soft Damping

The calculation and selection of the required profile damper should be carried out or be approved by ACE.

Dimensions and Capacity Chart

Туре	¹ W ₃ Nm/Cycle	² W ₃ Nm/Cycle	Max. Stroke mm	D	L ₁	М	L ₂	d ₁	d ₂	Weight kg
TS14-7	2	3	7	14	4	M4	15	19	13	0.0030
TS18-9	4	5.5	9	18	5	M5	18	24	16	0.0056
TS20-10	6	8.5	10	20	6	M6	21	27	19	0.0076
TS26-15	15	21	15	26	6	M6	28	37	25	0.0150
TS32-16	25	35	16	32	6	M6	32	44	30	0.0212
TS35-19	30	42	19	35	6	M6	36	48	33	0.0284
TS40-19	35	49	19	40	6	M6	38	51	34	0.0314
TS41-21	45	63	21	41	12	M12	41	55	38	0.0506
TS44-23	65	91	23	44	12	M12	45	60	40	0.0718
TS48-25	80	112	25	48	12	M12	49	64	44	0.0858
TS51-27	90	126	27	51	12	M12	52	69	47	0.1016
TS54-29	115	161	29	54	12	M12	55	73	50	0.1164
TS58-30	135	189	30	58	12	M12	59	78	53	0.1324
TS61-32	160	224	32	61	16	M16	62	83	56	0.2034
TS64-34	195	273	34	64	16	M16	66	87	60	0.2326
TS68-36	230	322	36	68	16	M16	69	92	63	0.2480
TS75-39	285	399	39	75	16	M16	75	101	69	0.3012
TS78-40	340	476	40	78	16	M16	79	105	72	0.3392
TS82-44	395	553	44	82	16	M16	84	110	75	0.3460
TS84-43	460	644	43	84	16	M16	85	115	78	0.4020
TS90-47	565	791	47	90	16	M16	92	124	84	0.4902
TS107-56	910	1 274	56	107	16	M16	110	147	100	0.7330

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

Characteristics of Type TS44-23

Energy-Stroke Characteristic (dynamic)

Force-Stroke Characteristic (dynamic) (with impact velocity over 0.5 m/s)

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 14 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 0.5 m/s) and static ($v \le 0.5 \text{ m/s}$) characteristics of all types are available on request.

TUBUS-Series Type TR Profile Damper Radial Damping

The **profile damper type TR** from the innovative ACE TUBUS series is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer.

The radial deformation of the TR series provides a very long and soft deceleration with a progressive energy absorption towards the end of stroke. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to 90 °C.

The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100% of the incoming energy.

The space saving package size ranges from \emptyset 29 mm up to \emptyset 100 mm and is very simply and quickly installed with the supplied special stepped mounting screw. The TR series have been specially developed to provide maximum stroke in the minimum mounting space in the capacity range from 2 Nm up to 115 Nm.

Life expectancy is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.

Impact velocity range: Up to max. 5 m/s

Environment: Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the W_3 rating by +40 %.

Mounting: In any position

Dynamic force range: 300 N to 6 200 N

Operating temperature range: -40 °C to 90 °C

Energy absorption: 17 % to 35 %

Material hardness rating: Shore 40D

Max. torque: M5: 6 Nm M6: 10 Nm M8: 25 Nm

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

ssue 4.2009 Specifications subject to change

Туре	¹ W3 Nm/Cycle	² W ₃ Nm/Cycle	Max. Stroke mm	А	L ₁	М	L ₂	В	С	Weight kg
TR29-17	2	3	17	29	5	M5	25	13	38	0.0062
TR37-22	3	4.5	22	37	5	M5	32	19	50	0.0128
TR43-25	4	5.5	25	43	5	M5	37	20	58	0.0172
TR50-35	6	8.5	35	50	5	M5	44	34	68	0.0222
TR63-43	15	21	43	63	5	M5	55	43	87	0.0508
TR67-40	25	35	40	67	5	M5	59	46	88	0.0770
TR76-46	40	56	46	76	6	M6	67	46	102	0.1042
TR83-50	45	63	50	83	6	M6	73	51	109	0.1416
TR85-50	70	98	50	85	8	M8	73	69	111	0.2062
TR93-57	90	126	57	93	8	M8	83	83	124	0.2970
TR100-60	115	161	60	100	8	M8	88	82	133	0.3346

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

Characteristics of Type TR93-57

Energy-Stroke Characteristic (dynamic) (with impact velocity over 0.5 m/s)

Force-Stroke Characteristic (dynamic) (with impact velocity over 0.5 m/s)

81

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 31 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

Dynamic (v > 0.5 m/s) and static (v \leqslant 0.5 m/s) characteristics of all types are available on request.

TUBUS-Series Type TR-H

Profile Damper Radial Damping (Hard Version)

Like the standard model TR, the new profile damper type TR-H is used for radial damping and therefore provides a very long and soft deceleration. The profile dampers from the innovative ACE TUBUS series are maintenance-free, self-contained damping elements made from a special Co-Polyester Elastomer. With nearly the same dimensions the TUBUS TR-H type provides a much higher energy absorption due to a harder mixture of materials. The new TR-H type completes the TUBUS series between the progressive model type TR and the almost linear type TS. This offers an individual and widely graduated range of damping characteristics within the whole TUBUS series. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to 90 °C. The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100% of the incoming energy.

The **space saving package size** ranges from Ø 30 mm up to Ø 102 mm and is very simply and quickly installed with the supplied special stepped mounting screw. The TR-H series have been specially developed to provide **maximum stroke** in the **minimum mounting space** in the capacity range from 2.3 Nm up to 228.5 Nm.

Life expectancy is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.

Impact velocity range: Up to max. 5 m/s

Environment: Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the W_3 rating by +40 %.

Mounting: In any position

Dynamic force range: 600 N to 14 400 N

Operating temperature range: -40 °C to 90 °C **Energy absorption:**

39 % to 50 %

Material hardness rating: Shore 55D

Mounting screw torque: M5: 6 Nm M6: 10 Nm M8: 25 Nm

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

Dimensions and Capacity Chart

Туре	¹ W ₃ Nm/Cycle	² W ₃ Nm/Cycle	Max. Stroke mm	A	L ₁	М	L ₂	В	С	Weight kg
TR30-15H	2.5	3.5	15	30	5	M5	23	13	38	0.004
TR39-19H	6	8.5	19	30	5	M5	30	19	50	0.011
TR45-23H	8.5	12	23	45	5	M5	36	20	58	0.016
TR52-32H	11.5	16	32	52	5	M5	42	34	68	0.025
TR64-41H	22.5	31.5	41	64	5	M5	53	43	87	0.051
TR68-37H	62	87	37	68	5	M5	56	46	88	0.080
TR79-42H	79	110.5	42	79	6	M6	64	46	102	0.105
TR86-45H	124	173.5	45	87	6	M6	69	51	109	0.146
TR87-46H	158	221	46	87	8	M6	68	69	111	0.190
TR95-50H	226	316.5	50	95	8	M8	77	83	124	0.266
TB102-56H	282.5	395.5	56	102	8	M8	84	82	133	0.319

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

Characteristics of Type TR95-50H

Energy-Stroke Characteristic (dynamic) (with impact velocity over 0.5 m/s)

Force-Stroke Characteristic (dynamic) (with impact velocity over 0.5 m/s)

83

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 25 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 0.5 m/s) and static ($v \le 0.5$ m/s) characteristics of all types are available on request.

TUBUS-Series Type TR-L

Profile Damper Radial Damping (Long Version)

The radial tube damper type TR-L

from the innovative ACE TUBUS series is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer.

The radial deformation of the TR series provides a very long and soft deceleration with a progressive energy absorption towards the end of stroke. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °C to 90 °C.

The tube damper has been specially developed for applications that require very low reaction forces. The actual force generated depends upon the length of the tube damper chosen.

The TUBUS TR-L type is suitable for a wide range of applications that require protection from shock or impact anywhere along a straight line. Typical applications include mining equipment, dockyard handling equipment and on baggage handling and conveyor systems.

The TR-L series have been developed to provide **maximum stroke** in the **mini-mum mounting space**.

Life expectancy is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.

Impact velocity range: Up to max. 5 m/s

Environment: Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the W_3 rating by +40 %.

Mounting: In any position Dynamic force range: 6 800 N to 286 000 N

Operating temperature range: -40 °C to 90 °C

Energy absorption: 14 % to 26 %

Material hardness rating: Shore 40D

Max. torque: M5: 6 Nm M8: 25 Nm M16: 210 Nm

On request: Special strokes, -colours, -sizes and -materials.

84

TUBUS-Series Type TR-L

Profile Damper Radial Damping (Long Version)

Ordering Example	TR66-40L-2
TUBUS radial long	▲ ▲ ▲
Outer-Ø 66 mm	
Stroke 40 mm	
Length 2 = 305 mm	

The calculation and selection of the
required profile damper should be carried
out or be approved by ACE.

Dimensions and Capacity Chart

Туре	¹ W ₃ Nm/Cycle	² W ₃ Nm/Cycle	Max. Stroke mm	А	В	С	D	Μ	L ₁	L ₂	Weight kg
TR29-17L	12	17	17	29	80	38	40	M5	5	25	0.029
TR43-25L	16	22.5	25	43	80	58	40	M5	5	37	0.072
TR63-43L	30	42	43	63	80	87	40	M5	5	55	0.106
TR66-40L-1	100	140	40	66	152	87	102	M8	8	59	0.280
TR66-40L-2	200	280	40	66	305	87	254	M8	8	59	0.580
TR66-40L-3	300	420	40	66	457	87	406	M8	8	59	0.830
TR66-40L-4	400	560	40	66	610	87	559	M8	8	59	1.300
TR66-40L-5	500	700	40	66	762	87	711	M8	8	59	1.330
TR76-45L-1	135	190	45	76	152	100	102	M8	8	68	0.380
TR76-45L-2	270	378	45	76	305	100	254	M8	8	68	0.730
TR76-45L-3	400	560	45	76	457	100	406	M8	8	68	1.130
TR76-45L-4	535	750	45	76	610	100	559	M8	8	68	1.430
TR76-45L-5	670	940	45	76	762	100	711	M8	8	68	1.730
TR83-48L-1	155	217	48	83	152	106	102	M8	8	73	0.480
TR83-48L-2	315	440	48	83	305	106	254	M8	8	73	0.930
TR83-48L-3	470	660	48	83	457	106	406	M8	8	73	1.380
TR83-48L-4	625	875	48	83	610	106	559	M8	8	73	4.830
TR83-48L-5	780	1 092	48	83	762	106	711	M8	8	73	6.000
TR99-60L-1	205	287	60	99	152	130	102	M16	16	88	0.790
TR99-60L-2	410	574	60	99	305	130	254	M16	16	88	1.290
TR99-60L-3	615	861	60	99	457	130	406	M16	16	88	1.940
TR99-60L-4	820	1 148	60	99	610	130	559	M16	16	88	2.540
TR99-60L-5	1 025	1 435	60	99	762	130	711	M16	16	88	3.100
TR99-60L-6	1 230	1 722	60	99	914	130	864	M16	16	88	3.700
TR99-60L-7	1 435	2 010	60	99	1 067	130	1 016	M16	16	88	4.300
TR143-86L-1	575	805	86	143	152	191	76	M16	16	127	1.440
TR143-86L-2	1 155	1 617	86	143	305	191	203	M16	16	127	2.900
TR143-86L-3	1 730	2 422	86	143	457	191	355	M16	16	127	4.000
TR143-86L-4	2 305	3 227	86	143	610	191	508	M16	16	127	5.290
TR143-86L-5	2 880	4 032	86	143	762	191	660	M16	16	127	6.590
TR143-86L-6	3 455	4 837	86	143	914	191	812	M16	16	127	7.890
TR143-86L-7	4 030	5 642	86	143	1 067	191	965	M16	16	127	9.900
TR188-108L-1	1 350	1 890	108	188	152	245	76	M16	16	165	2.340
TR188-108L-2	2 710	3 794	108	188	305	245	203	M16	16	165	4.640
TR188-108L-3	4 060	5 684	108	188	457	245	355	M16	16	165	6.890
TR188-108L-4	5 420	7 588	108	188	610	245	508	M16	16	165	9.190
TR188-108L-5	6 770	9 478	108	188	762	245	660	M16	16	165	11.390
TR188-108L-6	8 120	11 368	108	188	914	245	812	M16	16	165	13.640
TR188-108L-7	9 480	13 272	108	188	1 067	245	965	M16	16	165	15.940

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

TUBUS-Series Type TC

Profile Damper for Crane Equipment

The **profile damper type TC** from the innovative ACE TUBUS series is a maintenance-free, self-contained damping element made from a special Co-Polyester Elastomer. They have been specially developed for crane equipment applications and fulfill the international industry standards OSHA and CMAA.

Many crane applications require a spring rate with a high return force. This is achieved with the unique **Dual-Profile Concept** of the TC-S models.

For energy-management-systems the TC model types provide a cost efficient solution with a high return force capability. The very small and light package size from Ø 64 mm up to Ø 176 mm covers an energy absorption capacity ranging from 450 Nm up to 12 720 Nm/cycle. The excellent resistance to UV, seawater, chemical and microbe attack together with the wide operating temperature range from -40 °C to 90 °C enables a wide range of applications.

Life expectancy is extremely high; up to twenty times longer than for urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE.

Impact velocity range: Up to max. 5 m/s

Environment: Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the W_3 rating by +40 %.

Mounting: In any position Dynamic force range:

80 000 N to 978 000 N Operating temperature

range: -40 °C to 90 °C Energy absorption: 31 % to

63 %

Material hardness rating: Shore 55D

Max. torque: M12: 85 Nm M16: 210 Nm

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

ssue 4.2009 Specifications subject to change

TUBUS-Series Type TC

Profile Damper for Crane Equipment

Model Type TC

Ordering Example	TC83-73-				
TUBUS crane buffer	A A				
Outer-Ø 83 mm					
Stroke 73 mm					
Model type soft					

The calculation and selection of the required profile damper should be carried out or be approved by ACE.

Force-Stroke Characteristic (dynamic)

Dimensions and Capacity Chart

Туре	¹ W ₃ Nm/Cycle	² W ₃ Nm/Cycle	Max. Stroke mm	D	L ₁	М	L ₂	d ₁	d ₂	Weight kg
TC64-62-S	450	630	62	64	12	M12	79	89	52	0.175
TC74-76-S	980	1 372	76	74	12	M12	96	114	61	0.261
TC83-73-S	1 900	2 660	73	83	12	M12	94	127	69	0.328
TC86-39	1 210	1 695	39	86	12	M12	56	133	78	0.284
TC90-49	1 630	2 282	49	90	12	M12	68	124	67	0.265
TC100-59	1 770	2 480	59	100	12	M12	84	149	91	0.513
TC102-63	1 970	2 760	63	102	16	M16	98	140	82	0.633
TC108-30	1 900	2 660	30	108	12	M12	53	133	77	0.392
TC117-97	3 710	5 195	97	117	16	M16	129	188	100	1.053
TC134-146-S	7 290	10 210	146	134	16	M16	188	215	117	1.573
TC136-65	4 250	5 950	65	136	16	M16	106	178	106	1.173
TC137-90	6 350	8 890	90	137	16	M16	115	216	113	1.193
TC146-67-S	8 330	11 660	67	146	16	M16	118	191	99	1.573
TC150-178-S	8 860	12 400	178	150	16	M16	241	224	132	2.581
TC153-178-S	7 260	10 165	178	153	16	M16	226	241	131	2.493
TC168-124	10 100	14 140	124	168	16	M16	166	260	147	2.533
TC176-198-S	12 720	17 810	198	176	16	M16	252	279	150	3.591

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

Characteristics of Type TC90-49

Energy-Stroke Characteristic (dynamic)

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 1300 Nm the Energy-Stroke diagram shows that a stroke of about 38 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Note: With these types the return force towards the end of the stroke is significant and we recommend you try to use a minimum of 90 % of the total stroke available.

Dynamic (v > 0.5 m/s) and static (v \leq 0.5 m/s) characteristics of all types are available on request.

back

40

Overview of Profile Dampers

Physical Properties of TUBUS Profile Dampers

ACE TUBUS profile dampers are high performance damping elements made from a special Co-Polyester Elastomer. They have a high energy absorbing capacity compared with other materials.

The TUBUS-series comprises 5 main types with over 80 individual models.

The excellent damping characteristics are achieved as a result of the special elastomer material and the worldwide patented construction design. This enables us to change the characteristics of the elastomer material so that individual and distinct damping curves are possible.

TUBUS dampers offer a considerable performance advantage when compared to other materials such as rubber, urethanes (PUR) and steel springs.

A further advantage compared to other damping elements is the **operating life expectancy** – **up to twenty times longer than with urethane dampers**, **up to ten times longer than with rubber dampers and up to five times longer than with steel spring dampers**.

88

Characteristics of dynamic energy absorption for impact velocity over 0.5 m/s. For impact velocities under 0.5 m/s, please request a static characteristic curve.

The material does not absorb water or swell and it is highly resistant to abrasion. Products of the TUBUS-series will work at **temperatures of -40** °C up to 90 °C and are resistant to grease, oil, petroleum fluids, microbe and chemical attack and sea water. They also have good UV and ozone resistance. The **very long service life** of up to one million cycles, the **compact size** and the **low unit weight** differentiate the TUBUS profile dampers from all other types of elastomer damping elements.

If you are looking for an economic damping solution where the load does not need to be decelerated to an exact datum position and you do not need 100% absorption of the impact energy then TUBUS dampers are a real alternative to hydraulic end position damping. They are the preferred solution for end stop dampers in robotic systems, high bay warehouse systems and all similar automated plant and machinery. The innovative TUBUS dampers absorb energy while exhibiting the following damping characteristics:

Model type TA: Degressive characteristic with max. energy absorption (coloured area) with min. stroke. Energy absorption: 40 % to 66 %.

Model type TS: Almost linear characteristic with low reaction force over a short operating stroke. Energy absorption: 26 % to 56 %.

TR/TR-H/TR-L: Progressive characteristic with gradually increasing reaction force over a long stroke.
Energy absorption TR: 17 % to 35 %
Energy absorption TR-H: 39 % to 50 %
Energy absorption TR-L: 14 % to 26 %

For the crane industry we manufacture special **high capacity crane buffers** that have an ideal deceleration characteristic with high return force for this type of application and energy capacities from 450 to 12 720 Nm. This means you can have a TUBUS crane buffer capable of providing up to 900 kN of braking force in a package only weighing 3 kg and absorbing up to 50 % of the energy.

Special Damper

Besides the standard product range of the TUBUS-series there are also a large number of special products available upon request for customer-specific applications.

88 (ACE) StoBdämpfer GmbH · PO Box 1510 · D-40740 Langenfeld · Tel. +49-2173-9226-4100 · Fax +49-2173-9226-89 · E-Mail: info@acecontrols-int.com

Safe end position damping

ACE TUBUS profile dampers protect the integrated loading station on a new high speed machining centre.

The ACE TUBUS damper is designed to prevent overrun on the high speed loading station of a Camshaft machining centre used in the automobile industry. In the event that the drive train fails during operation or incorrect data is inputted the ACE TUBUS damper absorbs the impact preventing costly damage to the machine. The **TA98-40** TUBUS damper impressed engineers with this exceptionally long service life in operation.

When used as an emergency stop the TUBUS damper can absorb up to 63% of the impact energy.

89

Safety with ultra high speed operation

TUBUS profile dampers safeguard hydraulic cylinders.

In a testing facility for vehicle tanks, the test specimens are pulled out of the water with a support arm. A hydraulic cylinder carries out the swinging movement and is attenuated in the end position by two TUBUS **TR85-50**.

Even if this work could be taken over by other absorber solutions, the energy balance clearly speaks for the benefits of the profile dampers – they are inexpensive, they save space, they are free of leaks due to solid construction and are suitable for underwater functions in the test pool.

With the kind permission of Worthmann Maschinenbau GmbH Economical end position absorption on the hydraulic drive

Smooth pivoting

SLAB SL-030 to SL-300

Damping Plates for Shock Absorption

SLAB damping plates of the **SL-030**, **SL-100 and SL-300 series** are viscoelastic PUR materials that are manufactured according to a patented formula and which were especially designed to absorb shock loads. At the same time, the resulting structure-borne noise is effectively reduced.

This material is characterized by its very high inner damping. The rebound elasticity is around < 30 % (Tolerance +/-10 %) following DIN 53573. The result makes this product an alternative to hydraulic end-of-travel damping, if the load doesn't need to be stopped accurately and the energy doesn't have to be reduced by 100%.

The densities of SL-030 = 270 kg/m³ SL-100 = 500 kg/m³ and SL-300 = 800 kg/m³ cover a wide spectrum of the energy absorption to the applied area. This enables a relatively independent choice of applied area.

Impact velocity range: max. 5 m/s

Compression set: \leq 5 %, at 50 % of compression, 23 °C, 70 h, 30 min after unloading, according to EN ISO 1856

Environment: Resistant against ozone and UV radiation; food-graded according to ENV 1186-3 (also see chemical resistancy page 98)

Material: Mixed cellular polyether urethane

Standard density: 270 kg/m³, 500 kg/m³ and 800 kg/m³, according to DIN 53420

Impact resilience: < 30 %, tolerance +/-10 %, according to DIN 53573

Fire rating: B2, normally flammable according to DIN 4102

Operating temperature range: -30 $^\circ\text{C}$ to +70 $^\circ\text{C}$, short-term higher temperature potential up to 110 $^\circ\text{C}$

Delivery form: Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m wide, 5.0 m long. Strips: Up

to the maximum width and length. Other dimensions (also thickness), colours, shapes and cut-out parts on request.

Possibilities for cutting: Water jet cutting, stamping, splitting, sawing, drilling, etc.

Mounting style: Bonding (see adhesive recommendation page 97), clamps, screws, etc.

On request: Available with compact polyurethane wearing surface, shore hardness: 82 shore Sh A

customer on the specific application.

91

Dimensions and Capacity Chart (Sample Plates MP1 to MP3)

Type Part Number	¹ W ₃ max. Nm/Cycle	¹ Stroke Utilization mm	A	В	С	Area mm²	Density kg/m³	Return Time s	Weight kg
SL-030-12-D-MP1	2.3 (5.0)	3 (6)	50	50	12.5	2 500	270	approx. 3 (4)	0.008
SL-030-12-D-MP2	4.3 (9.5)	3 (6)	70.7	70.7	12.5	5 000	270	approx. 3 (4)	0.017
SL-030-12-D-MP3	9.5 (19.5)	3 (6)	100	100	12.5	10 000	270	approx. 3 (4)	0.034

¹ Energy absorption and stroke utilization as well as the below illustrated dynamic curve progression refer to a calculated free falling mass with an impact velocity of 1 m/s. For differing application data, these values can only be used as a reference. The energy absorption depends on the individual impact surface and stroke utilization. The longer the load duration the more the reduction in energy absorption (material fatigue).

Characteristics of Type SL-030-12

ssue 4.2009 Specifications subject to change

customer on the specific application.

Dimensions and Capacity Chart (Sample Plates MP1 to MP3)

Type Part Number	¹ W ₃ max. Nm/Cycle	¹ Stroke Utilization mm	A	В	С	Area mm²	Density kg/m³	Return Time s	Weight kg
SL-030-25-D-MP1	3.5 (6.0)	6 (12)	50	50	25	2 500	270	approx. 4 (5)	0.017
SL-030-25-D-MP2	5.7 (11.5)	6 (12)	70.7	70.7	25	5 000	270	approx. 4 (5)	0.034
SL-030-25-D-MP3	11.5 (21.5)	6 (12)	100	100	25	10 000	270	approx. 4 (5)	0.068

¹ Energy absorption and stroke utilization as well as the below illustrated dynamic curve progression refer to a calculated free falling mass with an impact velocity of 1 m/s. For differing application data, these values can only be used as a reference. The energy absorption depends on the individual impact surface and stroke utilization. The longer the load duration the more the reduction in energy absorption (material fatigue).

92 Characteristics of Type SL-030-25

Dimensions and Capacity Chart (Sample Plates MP1 to MP3)

Type Part Number	¹ W ₃ max. Nm/Cycle	¹ Stroke Utilization mm	A	В	С	Area mm²	Density kg/m³	Return Time s	Weight kg
SL-100-12-D-MP1	4.5 (13.0)	3 (6)	50	50	12.5	2 500	500	approx. 3 (4)	0.016
SL-100-12-D-MP2	11.5 (29.0)	3 (6)	70.7	70.7	12.5	5 000	500	approx. 3 (4)	0.031
SL-100-12-D-MP3	23.0 (75.0)	3 (6)	100	100	12.5	10 000	500	approx. 3 (4)	0.063

¹ Energy absorption and stroke utilization as well as the below illustrated dynamic curve progression refer to a calculated free falling mass with an impact velocity of 1 m/s. For differing application data, these values can only be used as a reference. The energy absorption depends on the **individual impact surface** and stroke utilization. The longer the load duration the more the reduction in energy absorption (material fatigue).

Characteristics of Type SL-100-12

Dimensions and Capacity Chart (Sample Plates MP1 to MP3)

Type Part Number	¹ W ₃ max. Nm/Cycle	¹ Stroke Utilization mm	A	В	С	Area mm²	Density kg/m³	Return Time s	Weight kg
SL-100-25-D-MP1	5.7 (14.5)	6 (12)	50	50	25	2 500	500	approx. 4 (5)	0.031
SL-100-25-D-MP2	11.5 (33.0)	6 (12)	70.7	70.7	25	5 000	500	approx. 4 (5)	0.062
SL-100-25-D-MP3	28.5 (90.0)	6 (12)	100	100	25	10 000	500	approx. 4 (5)	0.125

¹ Energy absorption and stroke utilization as well as the below illustrated dynamic curve progression refer to a calculated free falling mass with an impact velocity of 1 m/s. For differing application data, these values can only be used as a reference. The energy absorption depends on the **individual impact surface** and stroke utilization. The longer the load duration the more the reduction in energy absorption (material fatigue).

94 Characteristics of Type SL-100-25

Dimensions and Capacity Chart (Sample Plates MP1 to MP3)

Type Part Number	1 W ₃ max. Nm/Cycle	¹ Stroke Utilization mm	A	В	С	Area mm²	Density kg/m³	Return Time s	Weight kg
SL-300-12-D-MP1	17.0 (85.0)	3 (6)	50	50	12.5	2 500	800	approx. 2 (3)	0.025
SL-300-12-D-MP2	50.0 (250.0)	3 (6)	70.7	70.7	12.5	5 000	800	approx. 2 (3)	0.050
SL-300-12-D-MP3	100.0	3 (6)	100	100	12.5	10 000	800	approx. 2 (3)	0.100

¹ Energy absorption and stroke utilization as well as the below illustrated dynamic curve progression refer to a calculated free falling mass with an impact velocity of 1 m/s. For differing application data, these values can only be used as a reference. The energy absorption depends on the individual impact surface and stroke utilization. The longer the load duration the more the reduction in energy absorption (material fatigue).

Characteristics of Type SL-300-12

Force-Stroke Dynamic Stroke Utilization 3 mm, 25 %

5,0

4,0

6,0

95

2 500 mm²

Area

Dimensions and Capacity Chart (Sample Plates MP1 to MP3)	

Type Part Number	¹ W ₃ max. Nm/Cycle	¹ Stroke Utilization mm	A	В	С	Area mm²	Density kg/m³	Return Time s	Weight kg
SL-300-25-D-MP1	19.5 (90.0)	6 (12)	50	50	25	2 500	800	approx. 3 (4)	0.050
SL-300-25-D-MP2	50.0 (225.0)	6 (12)	70.7	70.7	25	5 000	800	approx. 3 (4)	0.100
SL-300-25-D-MP3	150.0	6 (12)	100	100	25	10 000	800	approx. 3 (4)	0.200

¹ Energy absorption and stroke utilization as well as the below illustrated dynamic curve progression refer to a calculated free falling mass with an impact velocity of 1 m/s. For differing application data, these values can only be used as a reference. The energy absorption depends on the **individual impact surface** and stroke utilization. The longer the load duration the more the reduction in energy absorption (material fatigue).

96 Characteristics of Type SL-300-25

96

Technical Information

Bonding of Polyurethane (PUR) Elastomers

Cellular and compact parts of polyurethane (PUR) elastomers SLAB damping plates can be bonded according to the following recommendations. If treatment instructions are followed, the strengths of the bonded joint can be equivalent to the elastomer material itself.

1. General Information

To achieve the required bonding strength it is necessary to ensure the correct adhesive is chosen for each individual application.

Contact Bonding Material: thin adhesive film, with little filling of the gaps. Correcting or moving of the areas covered with bonding material is no longer possible after the first contact is made (contact effect).

Once a bonding is separated, the bonding process must be renewed. Please note that creases, ripples or blisters cannot be straightened once the contact is made.

Hardening Bonding Material: (As thin as possible) the film of glue fills the joint. The gluing can be done after the edges are brought together.

2. Preparation

The preparation of bonding surfaces is of significant importance for the bonding strength. The surfaces must be adapted to each other and available in plain, clean form.

Careful removal of: adhesive remnants, oil, fat, separating agents, dirt, dust, scales, molding layers, protective coating, finish, paint, sweat etc.

Mechanical Support: stripping, brushing, scraping, grinding, sandblasting.

Chemical Support: degreasing (washing off with grease remover), etching, priming; pay attention to chemical resistancy on page 98!

In general, SLAB damping plates in sheet form can be bonded without pretreatment. Molded parts, with or without special skin, have to be cleaned from left-over separating agents, if necessary by grinding. When bonding with other materials like plastic, wood, metal or concrete, mechanical and/or chemical additives have to be used.

The adhesive has to be prepared according to the formula, observing the manufacturer's recommendations. The adhesive film is also to be carefully applied pursuant to these details. (Tools: brush, spatula, adhesive spreader, airless spray gun).

Contact Bonding Material: Apply the non-gap-filling adhesive film to both bonding surfaces – the thinner, the better. To close the pores of low density materials, two layers may be necessary.

Hardening Bonding Material: Apply evenly. Possible irregularities can be compensated by the film thickness.

3. Bonding

When using contact bonding material, the flash off time has to be kept in mind. Especially, with systems containing water instead of usual solvents, the adhesive film must be as dry as possible in order to pass the 'finger test' – no marks appear when touching the adhesive surface. When using hardening bonding material, the parts have to be joined immediately after applying the bonding material.

4. Pressing

Contact Bonding Material: contact pressure up to 0.5 N/mm²

Hardening Bonding Material: fix firmly

It is important to carefully follow the manufacturer's instructions with regard to processing temperature, hardening time and earliest possible loading.

5. Selection of Approved Bonding Materials

Because of the variety of materials that can be bonded together as well as numerous suitable bonding materials, we refer you to a worldwide leading producer of bonding and sealing materials.

Sika Deutschland GmbH Kornwestheimer Str. 103-107 D-70439 Stuttgart Tel.: +49-711-8009-0 Fax: +49-711-8009-321 E-Mail: info@de.sika.com Internet: http://www.sika.de

Chemical Resistance and Sample Sets

Test (following DIN 53428)

Exposure time of the medium: 6 weeks at room temperature, but for concentrated acids and bases as well as solvents: 7 days at room temperature

Evaluation Criteria

Changing of tensile strength and elongation of break (dry samples), change in volume

Evaluation Standard

UV radiation and weathering

Biological resistance

- Excellent resistance, 1 change in characteristics <10 %
- 2 Good resistance, change in characteristics between 10 % and 20 %
- 3 Conditional resistance,
- change in characteristics partly above 20 % 4 Not resistant,

change in characteristics all above 20 %

All information is based on our current knowledge and experiences. We reserve the rights for changes towards product refinement.

Chemical Resistance

Water/watery solutions	SL-030 to SL-300	Acids and Bases ¹
Water	1	Formic acid
Iron(III) chloride 10 %	1	Acetic acid
Sodium carbonate 10 %	1	Phosphoric acid
Sodium chlorate 10 %	1	Nitric acid
Sodium chloride 10 %	1	Hydrochloric acid
Sodium hydrogencarbonate 10 %	1	Sulphuric acid
Sodium nitrate 10 %	1	Ammonia solution
Herbicides (div.)	1	Caustic potash solution
Tensides (div.)	1	Caustic soda solution
Hydrogen peroxide 3 %	1	
Laitance	1	Solvents
Oils and Groases		Acetone
Olis and Greases		Ethyl acetate
ASTM Oil No. 1	1	Diesel/Fuel oil
ASTM Oil No. 3	1	Carburetor fuel/benzine
Laitance	2	Glycerin
Hydraulic oils	depends on consistency/additives	Glycols
Motor oil	1	Cleaning solvents/hexane
Turpentine oil	3	Methanol
Formwork oil	1	Thinner
Silicone oil	1	Aromatic hydrocarbons
Cooking oil	1	
High performance grease	1-2	Other Factors
Railroad switch lubricant	1-2	Hydrolysis

NILLIC ACIU	4
Hydrochloric acid	3
Sulphuric acid	3
Ammonia solution	3
Caustic potash solution	2
Caustic soda solution	2
Solvents	
Acetone	4
Ethyl acetate	4
Diesel/Fuel oil	2
Carburetor fuel/benzine	3
Glycerin	1
Glycols	1-2
Cleaning solvents/hexane	1
Methanol	3
Thinner	4
Aromatic hydrocarbons	4
Other Factors	
Hydrolysis	1
Ozone	1

SL-030 to SL-300 4 3 2

1-2

¹ The resistance towards acids and bases depends on the concentration.

Sample Plates and Sample Sets

Set "Sizes" comprising 1 model, 1 type of thickness, 3 sizes = 3 sample plates

Part Number	Contents
SL-SET-1.1	SL-030-12-MP1 to MP3 (dimensions 50 x 50 mm, 70.7 x 70.7 mm, 100 x 100 mm)
SL-SET-1.2	SL-030-25-MP1 to MP3 (dimensions 50 x 50 mm, 70.7 x 70.7 mm, 100 x 100 mm)
SL-SET-1.3	SL-100-12-MP1 to MP3 (dimensions 50 x 50 mm, 70.7 x 70.7 mm, 100 x 100 mm)
SL-SET-1.4	SL-100-25-MP1 to MP3 (dimensions 50 x 50 mm, 70.7 x 70.7 mm, 100 x 100 mm)
SL-SET-1.5	SL-300-12-MP1 to MP3 (dimensions 50 x 50 mm, 70.7 x 70.7 mm, 100 x 100 mm)
SL-SET-1.6	SL-300-25-MP1 tos MP3 (dimensions 50 x 50 mm, 70.7 x 70.7 mm, 100 x 100 mm)

Set "Models" comprising 3 models, 1 type of thickness, 1 size = 3 sample plates

Part Number	Contents
SL-SET-2.1	SL-030-12-D-MP1, SL-100-12-D-MP1, SL-300-12-D-MP1 (dimensions 50 x 50 mm)
SL-SET-2.2	SL-030-25-D-MP1, SL-100-25-D-MP1, SL-300-25-D-MP1 (dimensions 50 x 50 mm)
SL-SET-2.3	SL-030-12-D-MP2, SL-100-12-D-MP2, SL-300-12-D-MP2 (dimensions 70.7 x 70.7 mm)
SL-SET-2.4	SL-030-25-D-MP2, SL-100-25-D-MP2, SL-300-25-D-MP2 (dimensions 70.7 x 70.7 mm)
SL-SET-2.5	SL-030-12-D-MP3, SL-100-12-D-MP3, SL-300-12-D-MP3 (dimensions 100 x 100 mm)
SL-SET-2.6	SL-030-25-D-MP3, SL-100-25-D-MP3, SL-300-25-D-MP3 (dimensions 100 x 100 mm)

Sample Plates	
Part Number	Dimensions and Type
SL-030-12-D-MP4	220 x 150 x 12.5 mm
SL-030-12-D-MP4-V+K	220 x 150 x 12.5 mm + layer for wear protection 2 mm, self-adhesive on one side
SL-030-25-D-MP4	220 x 150 x 25 mm
SL-100-12-D-MP4	220 x 150 x 12.5 mm
SL-100-12-D-MP4-V+K	220 x 150 x 12.5 mm + layer for wear protection 2 mm, self-adhesive on one side
SL-100-25-D-MP4	220 x 150 x 25 mm
SL-300-12-D-MP4	220 x 150 x 12.5 mm
SL-300-12-D-MP4-V+K	220 x 150 x 12.5 mm + layer for wear protection 2 mm, self-adhesive on one side
SL-300-25-D-MP4	220 x 150 x 25 mm

SLAB Damping Plates

Application Examples

ACE-SLAB damping plates protect man and machine.

At the beginning of the construction phase of a modern processing centre at the end position, a 25 kg cable channel collided with force against the housing and produced a deafening noise and mechanical strain on the energy chain. A reliable solution for compliance with the operational parameters was realized with the **SL-030-25-Dxxxx** type ACE-SLAB damping plates even before the milling machine was finished.

Low-noise energy chain

ACE-SLAB damping plates make tyre transport safer. Developed for absorbing the impact of forces, the ACE-SLAB damping plates **SL-030-121-Dxxxx** applied in this tyre testing system are ideal for protecting the sliding parts of the machine during quality tests. The individual customisation of the ring form of the centre arm and simple integration into the equipment also support the decision for applying these innovative absorber elements.

With the kind permission of SDS Systemtechnik GmbH, www.sds-systemtechnik.de Perfectly fitted machine protection

Noise reduction

Impact reduction in ring form

99

SLAB damping plates of the SL-150 to SL-720 are universally applicable elastic PUR materials that are manufactured according to a patented formula and which are used throughout industry. The standard densities of 150 kg/m³ to 720 kg/m³ serve as vibration insulation in a wide variety of applications. For specific applications, special designs with specific densities can be manufactured. The static and dynamic product characteristics are precisely defined. The effectiveness of elastic suspension can be calculated in advance. The necessary parameters are shown on a respective checklist.

The static load capacity of standard materials are in the range of:

SL-150: 0 to 0.01 N/mm² SL-220: 0 to 0.025 N/mm² SL-290: 0 to 0.05 N/mm² SL-450: 0 to 0.15 N/mm² SL-600: 0 to 0.30 N/mm² SL-720: 0 to 0.50 N/mm²

and for special designs up to 0.8 N/mm². Unusual and light loads can withstand forces of 5.0 N/mm². This value can reach up to 6 N/mm² for special designs.

"Efficiency of the elastic damping can be calculated in advance!"

Compression set: \leq 5 %, at 50 % of compression, 23 °C, 70 h, 30 min after unloading, according to EN ISO 1856

Environment: Resistant against ozone and UV radiation; food-graded according to ENV 1186-3 (also see chemical resistancy page 98)

Material: Mixed cellular polyether urethane

Standard density: 150 kg/m³, 220 kg/m³, 290 kg/m³, 450 kg/m³, 600 kg/m³ and 720 kg/m³, according to DIN 53420, special designs on request

Fire rating: B2, normally flammable according to DIN 4102

Operating temperature range: -30 °C to +70 °C, shortterm higher temperature potential up to 110 °C

Delivery form: Thickness: 12.5 mm and 25 mm. Rolls: 1.5 m

wide, 5.0 m long. Strips: Up to the maximum width and length. Other dimensions (also thickness), colours, shapes and cut-out parts on request.

Possibilities for cutting: Water jet cutting, stamping, splitting, sawing, drilling, etc.

Mounting style: Bonding (see adhesive recommendation page 97), clamps, screws, etc.

On request: Available with compact polyurethane wearing surface, shore hardness: 82 shore Sh A.

SLAB Vibration Damping Plates

General Product Description and Design Guidelines

Even load distribution of vibration damping elements are illustrated using the example of a combustion engine

Maximize the bearing's torsional stiffness!

Merging of assembly groups (combined elastic bearing)

Mounting of individual equipment components illustrated using the example of a pump

Pay attention to separate flexible mounts of connected equipment components!

Pay attention to flexible base plates or machine frames!

Use large flex resistant base plates or machine frames! Machines generate vibrations which are transmitted to the surroundings. They can influence the manufacturing process of other machines and thereby the quality of the products.

Vibrations disrupt the location and the environment and cause damage to buildings. SLAB polyurethane elastomer is a material that effectively reduces vibration and structure-borne noise. Depending on the requirements, SLABs are available in different densities, thicknesses and dimensions.

SLAB damping plates are used to insulate vibrations for:

- Machine tools
- Textile machinery
- Air conditioning and ventilating machines
- Crane rails
- Hydraulic crushers
- Presses / stamping machines etc.

Potential for direct bearing support on SLAB damping plates:

Full surface mount

Discrete bearings

For detailed information about this product see **www.acecontrols-int.com**

Full surface mounted eccentric press

- sufficient base size
- modeling
- assure vibration insulation
- static view: center of gravity, deflection
- maximize torsional stiffness
- dynamic view: forces, torques, amplitude
- 1 Vibration damping 2 Concrete base

Source: SUVA, Elastic Bearing of Machines

Rotary Dampers

ACE rotary dampers are sealed maintenance-free units. They are available with fixed or adjustable damping rates. The damping can be clockwise, anticlockwise or in both directions. The outer body is either plastic or metal depending upon model size. The output connection can be direct onto the keyed output shaft or indirect via a plastic gear (available with 4 standard modules). Plastic racks with modules of 0.5 to 1 are also available. Applications include office machinery, lids and flaps, floppy disc drives, piano lids, CD players, auto glove-boxes, vending machines, medical equipment, furniture industry and a multitude of other uses.

Damping Vane

Keyed Output Shaft

Damping Orifice

Pressure Chamber

Outer Body

Function: ACE rotary dampers guarantee the smooth controlled opening and closing of small lids, covers and flaps. They can be mounted directly on the pivot axis or can be used to provide linear damping by using a plastic gear and rack. They enable mechanisms to operate with a smooth controlled motion giving that "touch of quality" to whatever product they are used on. ACE rotary dampers are filled with a special high viscosity fluid (silicone type) and sealed for

life. The fluid is passed through an orifice or groove by a rotating vane to provide damping resistance. The damping torque generated is determined by the fluid viscosity and by the orifice configuration.

Note: With a max. rotational speed of 50 revs/min and a maximum of 10 cycles/min (12 cycles/min with the FDT/ FDN types) the rotary dampers still provide more than 80% of their damping torque after a working life of 50 000 cycles.

ssue 4.2009 Specifications subject to change

FRT-E2

Dims. in () without gear

Damping in both Directions of Rotation

Without Gear	With Gear	Damping Torque Ncm (Nominal 20 rpm. 23 °C)
FRT-E2-100	FRT-E2-100-G1	0.10 +/- 0.05
FRT-E2-200	FRT-E2-200-G1	0.20 +/- 0.07
FRT-E2-300	FRT-E2-300-G1	0.30 +/- 0.08
FRT-E2-400	FRT-E2-400-G1	0.40 +/- 0.10

¹ A 250 mm long plastic rack is available for use with this part see page 110.

FRT-G2

103

400

300

- 200

- 100

Damping in both Directions of Rotation

Without Gear	With Gear	Damping Torque Ncm (Nominal 20 rpm. 23 °C)
FRT-G2-200	FRT-G2-200-G1	0.20 +/- 0.07
FRT-G2-300	FRT-G2-300-G1	0.30 +/- 0.08
FRT-G2-450	FRT-G2-450-G1	0.45 +/- 0.10
FRT-G2-600	FRT-G2-600-G1	0.60 +/- 0.12
FBT-G2-101	FBT-G2-101-G1	1 00 +/- 0 20

Dims. in () without gear

¹ A 250 mm long plastic rack is available for use with this part see page 110.

103

FRT-C2 and FRN-C2

Bidirectional Damping	Right-Hand Damping (clockwise)	Left-Hand Damping (anti-clockwise)	Model	Damping Torque Ncm (Nominal 20 rpm. 23 °C)
FRT-C2-201	FRN-C2-R201	FRN-C2-L201	without gear	2 +/- 0.6
FRT-C2-201-G1	FRN-C2-R201-G1	FRN-C2-L201-G1	with gear	2 +/- 0.6
FRT-C2-301	FRN-C2-R301	FRN-C2-L301	without gear	3 +/- 0.8
FRT-C2-301-G1	FRN-C2-R301-G1	FRN-C2-L301-G1	with gear	3 +/- 0.8

Material:	Polycarbonate plastic	FRT/N-C2 (at 23 °C)
Operating temperature range: Tooth: Module: Pressure angle: No. of teeth: P.C.D.:	0 °C to 50 °C Involute ¹ 0.8 20 ° 11 8.8 mm	E 5 4 3 2 1 0 0 10 20

FRT/N-C2 (at 20 rpm)

¹ A 170 mm long flexible plastic rack and a 250 mm long rigid rack are available for use with this part see page 110.

FRT-D2 and FRN-D2

Bidirectional Damping	Right-Hand Damping (clockwise)	Left-Hand Damping (anti-clockwise)	Model	Damping Torque Ncm (Nominal 20 rpm. 23 °C)
FRT-D2-102	FRN-D2-R102	FRN-D2-L102	without gear	10 +/- 2
FRT-D2-102-G1	FRN-D2-R102-G1	FRN-D2-L102-G1	with gear	10 +/- 2
FRT-D2-152	FRN-D2-R152	FRN-D2-L152	without gear	15 +/- 3
FRT-D2-152-G1	FRN-D2-R152-G1	FRN-D2-L152-G1	with gear	15 +/- 3
FRT-D2-501	FRN-D2-R501	FRN-D2-L501	without gear	5 +/- 1
FRT-D2-501-G1	FRN-D2-R501-G1	FRN-D2-L501-G1	with gear	5 +/- 1

¹ A 250 mm and 500 mm long plastic rack are available for use with this part see page 110.

Issue 4.2009 Specifications subject to change

FYN-P1

Right-Hand Damping (clockwise) black	Left-Hand Damping (anti-clockwise) white	Damping Torque Ncm	Return Damping Torque Ncm
FYN-P1-R103	FYN-P1-L103	100	30
FYN-P1-R153	FYN-P1-L153	150	50
FYN-P1-R183	FYN-P1-L183	180	80

Material: Operating temperature range:

Max. rotation angle:

Polycarbonate plastic -5 °C to 50 °C 0.010 kg

Do not use damper as final end stop. Fit external mechanical stops at each end of travel.

115°

FYN-N1

Weight:

Damping Torque

Ncm

100

200

250

300

white end cap: left-hand damping black end cap: right-hand damping

105

105

Right-Hand Damping (clockwise)
FYN-N1-R103
FYN-N1-R203
FYN-N1-R253
FYN-N1-R303
Material:
Operating
temperature ran
tomporataro rang

Weight:

Issue 4.2009 Specifications subject to change

Polycarbonate plastic -5 °C to 50 °C nperature range:

Left-Hand Damping

(anti-clockwise)

FYN-N1-L103

FYN-N1-L203

FYN-N1-L253

FYN-N1-L303

0.012 kg Max. rotation angle: 110°

"Coloured end cap for identification of the damping direction!"

Return Damping Torque

Ncm

20

40

40

80

Do not use damper as final end stop. Fit external mechanical stops at each end of travel.

Rotation

110°

Rotary Dampers FYN-U1 and FYN-K1

FYN-U1

20

. 108° Rotation

115°

Right-Hand Damping (clockwise)	Left-Hand Damping (anti-clockwise)	Damping Torque Ncm	Return Damping Torque Ncm
FYN-U1-R203	FYN-U1-L203	200	40
FYN-U1-R253	FYN-U1-L253	250	40
FYN-U1-R303	FYN-U1-L303	300	80

Material:	Zinc diecast
Operating temperature range:	-5 °C to 50 °C
Weight:	0.04 kg
Max. rotation angle:	115°

Do not use damper as final end stop. Fit external mechanical stops at each end of travel.

Issue 4.2009 Specifications subject to change

FRT/FRN-K2 and FRT/FRN-F2

Bidirectional Damping	Right-Hand Damping (clockwise)	Left-Hand Damping (anti-clockwise)	Damping Torque Ncm (Nominal 20 rpm. 23 °C)
FRT-K2-502	FRN-K2-R502	FRN-K2-L502	50 +/- 10
FRT-K2-103	FRN-K2-R103	FRN-K2-L103	100 +/- 20
FRT-F2-203	FRN-F2-R203	FRN-F2-L203	200 +/- 40
FRT-F2-303	-	-	300 +/- 80
FRT-F2-403	-	-	400 +/- 100

Material:	Polycarbonate plastic	I
Operating temperature range: Weight:	0 °C to 50 °C max. 0.116 kg	

FRT-K2 and -F2 (at 20 rpm)

Туре

FFD-25

Damping Torque Nm

0.1 / 0.5 / 1.0

Damping Option ¹

Type S

Type S

Type S

Type W

Type W

Type W

L₂

36

38

34

36

38

42 34

46

42

44

 d_1

21

24

26

21

24

26

Standard Type

H₂ h₂

16 4

16 4 4

16 4

22 4 4

22

22 4 4

4 4

 d_2

6.2

8.2

10.2

6.2

8.2

10.2

107

t

4

4

 FFD-28
 0.1 / 0.5 / 1.0

 FFD-30
 0.1 / 0.5 / 1.0 / 1.5

 FFD-25
 1.0 / 1.5 / 2.0

 FFD-28
 1.0 / 1.5 / 2.0

 FFD-30
 1.5 / 2.0

¹ Damping clockwise or anti-clockwise.

Material:	Polycarbonate plastic
Operating temperature range:	-10 °C to 60 °C
Rotational speed max.:	30 rpm
Cycle rate max.:	13 cycles per minute
Recommended shaft details:	Ø +0 - 0.03

Ordering Example	FFD	-25-	FS-	L-1	02
Friction Damper		•		≜	
Body Ø					
Mounting Style (Flange = F, Stand	dard :	= S)			
Damping Option (S or W)					
Damping Direction (right = R, left	t = L)				
Damping Torque see chart					

Dimensions

 \mathbf{D}_2

6

8

10

6

8

10

H₁

13

13

13

19

19

19

h₁ L₁

3

3 44

3

3

3

3 46

 \mathbf{D}_1

25

28

30

25

28

30

Damping Torque

	-	-	
102	=	0.1	Nm
502	=	0.5	Nm
103	=	1.0	Nm
153	=	1.5	Nm
203	=	2.0	Nm
253	=	2.5	Nm
303	=	3.0	Nm

ACE

FYT-H1 and FYN-H1

Keyed output shaft shown in mid-travel position

Model Adjustable

Bidirectional Damping	Right-Hand Damping	Left-Hand Damping	Damping Torque Nm
	(clockwise)	(anti-clockwise)	(adjustable)
FYT-H1	FYN-H1-R	FYN-H1-L	210

Material:	
Operating	
temperature range:	
Max. rotation angle:	
Return Damping Torque:	
Maximum side load:	
Weight:	

Zinc diecast, steel shaft

-5 °C to 50 °C 105° 0.5 Nm 50 N 0.24 kg A play of approx. 5° can occur at the beginning of movement. Do not use damper as final end stop. Fit external mechanical stops at each end of travel.

Keyed output shaft shown in mid-travel position

Model Adjustable			
Bidirectional Damping	Right-Hand Damping (clockwise)	Left-Hand Damping (anti-clockwise)	Damping Torque Nm (adjustable)
FYT-LA3	FYN-LA3-R	FYN-LA3-L	440

Material: Operating temperature range: Max. rotation angle: Return Damping Torque: Maximum side load: Weight: Zinc diecast, steel shaft

-5 °C to 50 °C 210° 4 Nm 200 N 1.75 kg A play of approx. 5° can occur at the beginning of movement. Do not use damper as final end stop. Fit external mechanical stops at each end of travel.

FDT-47 to 70

Recommended Drive Shaft Size

Damping in both Directions of Rotation

Туре	Damping Torque Nm	Dimensions											
	(at 20 rpm, 23 °C)	А	В	С	D	E	F	G	Н	R	۷		
FDT-47	2.0 +/- 0.3	65	56	8	4.5	47	42.8	1.6	10.3	4.5	10		
FDT-57	4.7 +/- 0.5	79	68	10	5.5	57	52.4	1.6	11.2	5.5	13		
FDT-63	6.7 +/- 0.7	89	76	12.5	6.5	63	58.6	1.6	11.3	6.5	17		
FDT-70	8.7 +/- 0.8	95	82	12.5	6.5	70	65.4	1.6	11.3	6.5	17		

There is no support for the output shaft within the damper structure. External support must be provided for the shaft.

FDN-47 to 70

		_
1	П	Q
Ц	V	J

Right-Hand Damping	Left-Hand Damping	Damping Torque Nm	Dime	nsions							
(clockwise)	(anti-clockwise)	(at 20 rpm, 23 °C)	A	В	С	D	E	F	G	Н	R
FDN-47-R	FDN-47-L	2.0 +/- 0.3	65	56	6	4.5	47	42.8	1.6	10.3	4.5
FDN-57-R	FDN-57-L	5.5 +/- 0.3	79	68	10	5.5	57	52.4	1.6	14	5.5
FDN-63-R	FDN-63-L	8.5 +/- 0.8	89	76	10	6.5	63	58.6	1.6	13.9	6.5
FDN-70-R	FDN-70-L	10.0 +/- 1.0	95	82	10	6.5	70	65.4	1.6	13	6.5

Material:

Operating
temperature range:-10 °C tRotational speed max.:50 rpmCycle rate max.:12 cycleWeight max.:0.12 kg

Steel. Output shaft sleeve: Nylon

- 10 °C to 50 °C 50 rpm 12 cycles per minute 0.12 kg There is no support for the output shaft within the damper structure.

External support must be provided for the shaft.

Recommended shaft details:

for FDN-47: Ø 6 ⁺⁰_{-0,03}

for FDN-57 to FDN-70: Ø 10 +0 -0.03

Hardness > HRC55, surface smoothness $R_Z < 1 \ \mu m$

Closing Torque T T = L / 2 \cdot m \cdot g \cdot cos a Ncm

Note: for a uniform lid assume centre of gravity is at distance L/2 from pivot.

Calculation of Rotary Damper for a Lid

- m Mass of lid (kg)
- L Length of lid from pivot (cm)
- n Rotation speed (r.p.m.)
- g Acceleration due to gravity (= 9.81)

Calculation Steps

- 1) Calculate max. torque damper will be exposed to (with example shown max. torque is at $\alpha = 0$).
- 2) Decide upon rotation speed desired.
- 3) Choose a rotary damper from catalogue that can handle the torque calculated above.
- 4) With the aid of the damper performance curves, check if the r.p.m. given at your torque corresponds to the desired closing speed of the lid.
- 5) If the r.p.m. is too high
 - choose a damper with a higher torque rating.
 - If the r.p.m. is too low
- choose a damper with a lower torque rating.

Mountings to Avoid

The output shaft should $\ensuremath{\textbf{not}}$ be exposed to side loading.

Side loading

110

End loading

Angular offset

Misalignment

Toothed Rack M0.5, M0.6, M0.8, M1.0

Toothed Rack M0.8P

Damping Direction

right hand damping = damping action in clockwise direction when looking onto the output shaft

Accessories

Toothed plastic rack with modules 0.5 to 1 available.

Models Available

Toothed Rack	A	В	С	Model
M0.5	250	4	4,5	rigid, milled
M0.6	250	4	6	rigid, milled
M0.8	250	6	8	rigid, milled
M0.8P	170	8	4,1	flexible, milled
M1.0	250	9	9	rigid, milled
M1.0	500	10	10	rigid, milled

Metal racks available on request.

Rotary Dampers

Application Examples

Even rhythm

ACE rotary dampers ensure the quiet shuffling of playing cards.

Software controlled playing card shuffling machines such as this one are used throughout the world and are equipped with the **FRT-G2-101-G1** type rotary dampers. Maintenance-free and ready to install. Before inserting the set of cards, you can ensure the quiet stopping of the plastic wedge in the equipment when it is driven upwards. The dampers can be applied to suit your requirements; clockwise, anticlockwise or in both directions; and they are just as reliable as the open and close slides in high qualitiy DVD or CD players.

Playing cards are shuffled simply and quietly

ACE rotary dampers protect the keyboard.

To provide long term protection in arduous and often dirty industrial applications (and also to protect against unauthorised access) the machine keyboard is installed in a lockable and pivoted housing cabinet.

ACE rotary dampers type **FRN-F1** were installed on the pivot axis to provide a smooth controlled motion to the keyboard as it is pulled down into its operating position. The damper also prevents overloading the hinge system and prevents damage to the keyboard, the housing cabinet and the hinges.

Damping lever motions

Pivoted machine keyboard

ssue 4.2009 Specifications subject to change

Precision Hydraulic Feed Controls VC

"For precise adjustment

of the feed rate!"

VC precision feed controls are sealed hydraulic units fitted with a high precision metering element. When the piston rod is depressed the hydraulic oil is forced through the adjustable precision metering orifice. This provides a constant and precise feed control throughout the stroke length. The feed rate can be adjusted over a wide range by turning the external adjuster knob at the rear end of the unit. The threaded outer body makes installation and the adjustment of feed control travel limits very simple. FA, MA and MVC are similar feed control units intended for applications where the higher precision of the VC series is not required. Precision feed controls are selfcontained, maintenance-free, temperature stable and stick-slip free. The rolling diaphragm seal provides a leakproof sealed unit and also provides an integral accumulator for the oil displaced during operation. The high precision, adjustable metering system can provide accurate feed rates from as low as 12 mm/min with light propelling forces. Applications include saws, cutters, drill feeds, grinding and boring machines in the plastics, metal, wood and glass industries.

Positive Stop International Positive Po

Impact velocity range: Avoid high impact velocities. At speeds of 0.3 m/s the maximum allowed energy is approx. 1 Nm for units up to 55 mm stroke and approx. 2 Nm for units 74 mm to 125 mm stroke. Where higher energies occur use a shock absorber for the initial impact.

Material: Body heavy duty steel tube with black oxide. Piston rod with hard chrome plating.

Nylon button PP600 can be fitted onto piston rod. Unit may be mounted in any position.

When mounting: Take care not to damage the adjuster knob.

Operating temperature range: 0 °C to 60 °C

Feed Rate

Adjustment

Only VC2515 to VC2255: Do not rotate piston rod, if excessive rotation force is applied rolling seal may rupture. In contact with petroleum base oils or cutting fluids specify optional neoprene rolling seal or install air bleed adaptor type SP.

ssue 4.2009 Specifications subject to change

Piston Rod

Precision Hydraulic Feed Controls VC2515 to VC25125

With Fine Adjustment

Capacity Chart

Type Part Number	Stroke mm	A	В	Min. Propelling Force N	Max. Propelling Force N	Min. Return Force N	Max. Return Force N	Rod Reset Time s	Max. Side Load Angle	Weight kg
VC2515FT	15	128	80	30	3 500	5	10	0.2	3	0.350
VC2530FT	30	161	110	30	3 500	5	15	0.4	2	0.450
VC2555FT	55	209	130	35	3 500	5	20	1.2	2	0.600
VC2575FT	75	283	150	50	3 500	10	30	1.7	2	0.681
VC25100FT	100	308	150	60	3 500	10	35	2.3	1	0.794
VC25125FT	125	333.5	150	70	3 500	10	40	2.8	1	0.908

Suffix "FT" signifies a M25x1.5 threaded body.

Suffix "F" signifies a plain body 23.8 mm dia. (without thread) also available, with optional clamp type mounting block.

Technical Data

Feed rate range: Min. 0.013 m/min with 400 N propelling force, max. 38 m/min with 3500 N propelling force. **Outer body:** Plain body 23.8 mm dia. (without thread) is also available.

Mounting Examples

Mounting with clamp mount MB25

Installed with air bleed collar SP25

Installed with switch stop collar inc. proximity switch and steel button AS25 plus PS25

Alternative circlip grooves

Bulkhead mounting for VC25...F with mounting block KB... (23.8 mm plain body option)

Precision Feed Controls FA/MA/MVC

Adjustable

MA30M

Accessories, mounting, installation ... see pages 30 to 35.

MA50M for use on new installations

Accessories, mounting, installation ... see pages 30 to 35.

MA35M

Accessories, mounting, installation ... see pages 31 to 35.

MA150M

M14x1 also available to special order Accessories, mounting, installation ... see pages 31 to 35.

MVC225M

Accessories, mounting, installation ... see pages 32 to 35.

FA1008V-B still available in future

Accessories, mounting, installation ... see pages 30 to 35.

M14x1.5

Thickness 12 mm

M12x1

Clamp Mount

MB14

MB20

M20x1.5

M25x1.5

6

Thickness 25 mm

Thickness 20 mm

40

Clamp Mount

MB25

Rectangular Flange

RF20

26

34

M5v1

Rectangular Flange

M6x14

Rectangular Flange

Precision Feed Controls FA/MA/MVC

Adjustable

Propelling Force N

Capacity Chart

		Topom	ing roroc it												
Type Part Number	Stroke mm	min. N	max. N	Min. Return Force N	Max. Return Force N	Rod Reset Time s	¹ Max. Side Load Angle	Weight kg							
MA30M	8	8	80	1.7	5.3	0.3	2	0.013							
MA50M	7	40	160	3	6	0.3	2	0.025							
FA1008V-B	8	10	180	3	6	0.3	2.5	0.024							
MA35M	10	15	200	5	11	0.2	2	0.043							
MA150M	12	20	300	3	5	0.4	2	0.06							
MVC225M	19	25	1 750	5	10	0.65	2	0.15							
MVC600M	25	65	3 500	10	30	0.85	2	0.3							
MVC900M	40	70	3 500	10	35	0.95	2	0.4							

¹ For applications with higher side load angles consider using the side load adaptor (BV) page 34.

Technical Data

Positive stop: Install mechanical stop 0.5 -1 mm before end of stroke on model FA1008V-B.

Operating temperature range: 0 °C to 66 °C

Mounting: In any position

Impact velocity range: Avoid high impact velocities. At speeds of 0.3 m/s the maximum allowed energy is approx. 2 Nm. Where higher energies occur use a shock absorber for the initial impact.

Material: Steel body with black oxide finish. Stainless steel piston rod.

Application Examples

Drilling sheet metal

Sawing aluminium and plastic profiles

A high force is necessary at the start of drilling when the drill first contacts the sheet. After the initial cut this high force causes the drill to break through. This results in jagged edges rather than a smooth clean hole and also causes tool breakage.

By installing an **ACE VC feed control** it is possible to precisely control the rate of drill advance. As a result the drilled holes are clean and consistent and drill breakage is considerably reduced.

Varying material types, hardness and wear on the saw blade causes the cutting pressure to vary greatly. However the saw advance speed should remain constant as changes cause breakage of the material being cut or of the saw blade.

An **ACE VC feed control** fitted directly to the cutting head provides a simple and low cost solution. The cutting speed remains constant and can be easily preset.

Hydraulic speed/feed controls from ACE are maintenance-free, self-contained sealed units for precise control of speed in both directions of travel. The travel speed can be adjusted independently in each direction of travel. Applications include pick and place, machine slides and guards, flaps and hoods etc. The wide variety of mounting accessories make the DVC easy to install on many different types of application.

Material: Body: Black anodised aluminium. Piston rod: Hard chrome plated steel. End fittings: Zinc plated steel.

Mounting: In any position. End fittings must be positively secured to prevent unscrewing.

Operating temperature range: 0 °C to 65 °C

Thread for

Mounting

Accessories

Note: If unit has not moved for some time the seals may dry causing an increased break-away force on the initial cycle.

On request: Special oils and external finishes. Uni-directional damping (free flow in reverse direction).

ssue 4.2009 Specifications subject to change

Hydraulic Speed/Feed Controls DVC-32

Adjustable (Compression and Extension Forces 42 N to 2000 N)

Without Free Travel

Hydraulic dampers from ACE are maintenance-free, self-contained and sealed units. They are available with body diameters from 28 mm up to 70 mm and with stroke lengths of up to 800 mm. As standard they are supplied as double acting dampers but a single acting version is also available. The single acting version is controllable in one direction only, with free flow in the opposite direction. The travel speed is adjustable and remains constant throughout the stroke. The new adjustment segment on the piston makes sensitive speed adjustment easy. ACE's hydraulic dampers sport the sleek design of our gas springs. The zinc-plated outer body and the hardchromed piston rod provide high quality and long life. A wide range of screw on mounting accessories make them very versatile and easy to install. Typical applications include machine guards and lids, fire safety flaps and doors, damping oscillations of suspended loads (Power and Free Systems) etc.

The stepless adjustment of the damping rate is achieved by pulling (or pushing) the piston rod to its fully extended (or compressed) position and then turning the piston rod.

"Without free travel by innovative balance chamber!" **Piston Rod** Bearing Bush Main Bearing **Rod Seal Tooth Adjustment Metering Orifice** Piston **Pressure Chamber** Intermediate Bearing and **Fixed Separator**

Balance Chamber

Thread for

Mounting

Accessories

Operating fluid: Hydraulic Oil **Mounting:** In any position. End fittings must be positively secured to prevent unscrewing.

Operating temperature range: -20 °C to 80 °C **Note:** If unit has not moved for some time the seals may dry

causing an increased break-

away force on the initial cycle. **On request:** Special lengths, alternative seals and end fittings.

Adjustable (Compression and Extension Forces 30 N to 3000 N) Without Free Travel

see page 156.

120

Hydraulic Dampers HBS-35

Adjustable (Compression and Extension Forces 30 N to 10 000 N) Without Free Travel

Adjustable (Compression and Extension Forces 2000 N to 40 000 N) Without Free Travel

ME24

fittings: Zinc plated steel.

Hydraulic Dampers HB-12 to HB-70

Hydraulic dampers from ACE are maintenance-free, self-contained and sealed units. They are available with body diameters from 12 mm up to 70 mm and with stroke lengths of up to 800 mm. As standard they are supplied as double acting dampers but a single acting version is also available. The single acting version is controllable in one direction only, with free flow in the opposite direction. The travel speed is adjustable and remains constant throughout the stroke. The new adjustment segment on the piston makes sensitive speed adjustment easy. ACE's hydraulic dampers sport the sleek design of our gas springs. The body has a black powder coated finish and the piston rod has a special hard ceramic coating which provides an exceptionally long lifetime and excellent corrosion protection. A wide range of screw on mounting accessories make them very versatile and easy to install. Typical applications include machine guards and lids, fire safety flaps and doors, damping oscillations of suspended loads (Power and Free Systems) etc.

Bearing Bush

— Main Bearing

Piston Rod

----- Rod Seal

Metering Orifice

Piston

Pressure Chamber

Outer Body

Function: The stepless adjustment of the damping rate is

achieved by pulling (or pushing) the piston rod to its fully extended (or compressed) position and then turning the piston rod.

Operating fluid: Hydraulic oil **Mounting:** In any position. End fittings must be positively secured to prevent unscrewing.

Operating temperature range: -20 °C to 80 °C

Thread for

Mounting Accessories

On request: Special lengths, alternative seals and end fittings.

Adjustable (Compression and Extension Forces 20 N to 180 N)

ssue 4.2009 Specifications subject to change

Adjustable (Compression and Extension Forces 20 N to 800 N)

On request: Special lengths, alternative seals and end fittings.

Adjustable (Compression and Extension Forces 30 N to 1800 N)

On request: Special lengths, alternative seals and end fittings.

Adjustable (Compression and Extension Forces 30 N to 3000 N)

On request: Special lengths, alternative seals and end fittings.

Adjustable (Compression and Extension Forces 30 N to 10 000 N)

On request: Special lengths, alternative seals and end fittings.

Adjustable (Compression and Extension Forces 2000 N to 50000 N)

On request: Special lengths, alternative seals and end fittings.

Hydraulic Dampers

Adjustment Instructions

Adjustment Instructions for HB-15 to HB-70 and HBS-28 to HBS-70

Adjustment only possible when piston rod is fully extended or fully compressed.

soft damping

strong damping

Rotate rod anti-clockwise Chigher velocity

- Rotate rod clockwise C slower velocity
- 1. Hold outer body.
- a) When piston rod is fully extended: Adjust damping by turning the piston rod as shown in the picture. Whilst rotating, pull the piston rod gently, to ensure the adjuster locates in the end cap.
 - b) When the piston rod is fully compressed:
 Adjust the damping by turning the piston rod as shown in the picture. Whilst rotating, push the piston rod gently, to ensure the adjuster locates in the end cap.
- 3. When resistance is felt when rotating the piston rod, stop turning. You will be at the end of the adjustment. NOTE: Do not rotate piston rod too quickly as damage could occur.
- 4. Check the damping, if required repeat step 1 to 3.
- 5. On all versions with a separator piston (type "T") adjustment is only possible when the piston rod is extended (adjustment 2a).

Adjustment Instructions for HB-12

Door Dampers TD-28 and TDE-28

Adjustable

Standard Dimensions TD-28

TD-28-50-50

Ordering Example

Type (Door Damper)		•
Body Ø (28 mm)		
Stroke A (50 mm)		
Stroke B (50 mm)		

Return Type

F = automatic return with return spring

D = without return spring. When one piston is pushed in, the piston rod at the other end is pushed out (thus the damper must be impacted from alternate ends to sequence correctly).

Dimensions and Capacity Chart

						Ma	ax. Energy Capac	ity		
Туре	Stroke A mm	Stroke B mm	С	L max	Max. Impact Mass kg	Max. Damping Force Q N	W ₃ Nm/Cycle	Max. Return Force N	Return Type	Adjustment
TD-28-50-50	50	50	220	402	150	1 550	75	30	F	Tooth Type
TD-28-70-70	70	70	260	482	200	1 500	70	30	F	Tooth Type
TD-28-100-100	100	100	220	502	250	1 500	80	40	F	Tooth Type
TD-28-120-120	120	120	208	410	250	3 800	165	0	D	Tooth Type

Ordering Example

Ordering Example	TDE-28-50
Type (Door Damper)	↑ ↑
Body Ø (28 mm)	

Dimensions and Capacity Chart

							Max. Energy Capacity	
0	Туре	Stroke mm	С	L max	Max. Impact Mass kg	Max. Damping Force Q N	W ₃ Nm/Cycle	Max. Return Force N
	TDE-28-50	50	130	221	4 000	2 400	80	30
	TDE-28-70	70	158	269	5 600	2 400	112	30
	TDE-28-100	100	193	333	8 000	2 400	160	30
	TDE-28-120	120	214	373	7 000	2 400	190	40

Technical Data

13

ACE door dampers are single ended or double ended adjustable hydraulic shock absorbers.

Application areas: Cushioning of elevator doors, automatic and sliding doors and similar applications.

Adjustment: Pull the piston rod fully out and turn the knurled rod end button. This allows the damping to be separately adjusted for each side. As a result of the adjustment mechanism the overall length L can be increased by up to 4 mm.

Operating temperature range: -20 °C to 80 °C Impact velocity range v: 0.1 to 2 m/s

Strokes per minute: max. 10

Material: Piston rod: hard chrome plated steel. Cylinder body: zinc plated steel.

On request: With different deceleration characteristics, special stroke lengths, special seals etc.

Hydraulic Dampers

Swinging movements cushioned by hydraulic dampers

Passengers always feel the swinging movement involved when cable cars arrive at the ski station.

Maintenance-free **hydraulic dampers** type **HB-40-300-EE-X-P** cushion these movements perfectly. Designers of the cable cars, connected by means of an articulated joint via a four-point frame and connection guide to the suspension rod, profit from the ability of the adjustable dampers to absorb compressive forces of up to 10 000 N on either side.

Hydraulic dampers for added convenience when operating cable cars

Hydraulic dampers bring the sled movement of this textile machine to a gentle stop.

At the turning point of 130 kg reeling spools, a sled should move up and down smoothly without causing a collision at the end of stroke position. The solution was provided by the hydraulic damper **DVC-32-100**. A selfcontained sealed unit, ready to install and maintenancefree these units are ideal for precise control of speeds in both directions of travel. The travel speed is maintained throughout the entire stroke and can be independently adjusted in each direction of travel. Thanks to their compact design and wide choice of mounting accessories, these dampers could be easily integrated into this machine.

Textile machine unreels threads even better

Precise unreeling

ssue 4.2009 Specifications subject to change

Industrial Gas Springs GS-8 to GS-70

The ACE gas spring range includes push type and pull type (traction) gas springs all designed for the industrial environment.

ACE industrial gas springs are maintenance-free and self-contained. They are available with body diameters from 8 mm up to 70 mm, and forces from 10 N up to 13 000 N ex. stock. ACE gas springs offer a high service life with a hard ceramic coating on the piston rod. Also an integrated low friction bearing with grease chamber which provides a very low break away force (GS-15 to GS-40). It allows them to be mounted in any orientation, although rod downwards is preferable if you want to take advantage of the built-in end position damping. The valve allows the force to be adjusted to your specific requirements. A wide variety of interchangeable end fittings makes installation easy and versatile. ACE gas springs are universally applicable wherever you have lifting and lowering. They remove the need for "muscle power" and provide controlled motion for lids, hoods, machine guards etc. The ACE selection software quickly specifies the correct gas spring for your individual application and we can deliver, usually within 24 hours. ACE traction gas springs work in pull direction and are available with body diameters of 19 mm and 28 mm.

"Force adjustable to your specific requirements – with gas valve ex. stock!"

Gas Valve

Filled with High Pressure Nitrogen Gas Precision Steel Tube

Metering Orifice for Controlled Extension and Compression Velocities

Oil Zone for End Position Damping and Lubrication (recommended mounting position: piston rod downwards)

Integral Grease Chamber for Increased Lifetime

Bearing Bush

Piston Rod with Hard Ceramic Coating **Function:** ACE industrial gas springs provide a maintenance-free sealed for life system, being filled with high pressure nitrogen gas. The oil zone filling provides end position damping and internal lubrication for a long lifetime. On the extension stroke of the gas spring, for example when opening a car tailgate, the nitrogen gas flows through the metering orifice in the piston to provide a controlled opening speed and the oil zone provides damping at the fully open position to avoid impact damage. The gas spring should be mounted "rod down" for this damping to be effective. On closing the

tailgate the gas spring helps support the weight. The metering orifice controls the extension and compression velocities of the gas spring.

Operating fluid: Nitrogen gas and oil (for end damping)

Mounting: In any position Operating temperature

range: -20 °C to 80 °C

On request: Without damping, extended length damping, special force curves, special lengths, alternative end fittings.

Gas springs are universally accepted, wherever you want **to push, pull, lift, lower, or position** covers, lids or other components by hand without using an external energy source.

ACE gas springs are individually filled to a predetermined pressure to suit a customer's requirement (extension Force F_1). The cross-sectional area of the piston rod and filling pressure determines the extension force $F = p^*A$. During the compression of the piston rod, nitrogen flows through an

orifice in the piston from the full bore side of the piston to the annulus. The nitrogen is compressed by the volume of the piston rod. As the piston rod is compressed the pressure increases, so increasing the reaction force (progression). The force depends on the proportional relationship between the piston rod and the inner tube diameter, which is approximately linear.

Gas Spring Force-Stroke Characteristics

Standard Gas Spring (Push Type)

 F_1 = nominal force at 20 °C (this is the pressure figure normally used when specifying the gas spring)

 F_2 = force in the complete compressed position

Traction Gas Spring (Pull Type)

Туре	¹ Progression approx. %	² Friction F _R approx. in N
GS-8	28	10
GS-10	20	10
GS-12	25	20
GS-15	27	20
GS-19	36 - 42 ³	30
GS-22	39 - 50 ³	30
GS-28	60 - 95 ³	40
GS-40	47 - 53 ³	50
GS-70	25	50

Туре	¹ Progression approx. %	² Friction F _R approx. in N	
GZ-19	10	20 - 40	
GZ-28	20	100 - 200	

¹ **The progression** (the slope of the force line in the diagrams above) is due to the reduction of the internal gas volume as the piston rod moves from its initial position to its fully stroked position. The approx. progression values given above for standard springs can be altered on request. **Effect of temperature:** The nominal F_1 figure is given at 20 °C. An increase of 10 °C will increase force by 3.4%.

Filling tolerance on F_1 force: -20 N to +40 N or 5% to 7%

² Depending on the filling force.

³ Depending on the stroke.

 F_1 = nominal force at 20 °C (this is the pressure figure normally used when specifying the gas spring) F_2 = force in the complete extended position

Service Life

Filling tolerance: -20 N to +40 N or 5 % to 7 %

Effect of temperature: An increase in temperature of each 10 °C will increase force by approx. 3.4 %.

Temperature range: -20 $^\circ\text{C}$ to +80 $^\circ\text{C}$ (special seals from -45 $^\circ\text{C}$ to 200 $^\circ\text{C}$)

Mounting: The gas springs should ideally be installed with the **piston rod pointing downwards** to use the end damping during the extension stroke to smoothly decelerate the motion of the gas spring. Some ACE gas springs have a uniquely designed front bearing with an integrated grease chamber allowing the gas spring to be mounted and operated in any position if required.

When fitting the gas springs ensure that the stroke is fully extended (GZ type fully compressed), this makes assembly and disassembly much easier. Support the moving mass/flap during assembly or disassembly to prevent accidents. To avoid twisting or side loading, it is recommended that ball joints or other pivoted mounting attachments are used. The mounting attachments must always be securely tightened onto the threaded studs of the gas spring. ACE gas springs are maintenance-free. DO NOT oil or grease the piston rod!

The piston rod must be protected from any hits, scratches or dirt and especially paint. Damage to the surface finish of the piston rod will destroy the sealing system and cause loss of pressure. The outer body must not be deformed or mechanically damaged.

ACE gas springs can be stored in any position. Experience has shown that long storage periods do not result in loss of pressure. However you may experience some "stiction" requiring a higher effort to move the gas spring for the first time after a long storage period.

Generally, ACE gas springs are tested to 70 000 to 100 000 complete strokes. This is equivalent to the seal lifetime (depending on model size) to a distance travelled of 2 km up to 10 km. During these tests the gas spring must not lose more than 5 % of its pressure. Depending upon the application and operating environment, the service life of these gas springs may be much longer. In practise 500 000 strokes or more have been achieved on some applications.

133

Lifetime for traction gas spring see pages 146 and 147.

Industrial Gas Springs

Adjustment Instructions Valve, Filling Kit

Adjustment Instructions Valve

Gas Spring Refilling Kit

Adjustment Instruction

- 1. Hold gas spring piston rod down.
- 2. Remove any fitting attached to the body end of the gas spring (GZ version the piston rod).
- 3. Insert adjuster knob on thread end on the cylinder body (on GZ version thread end on the piston rod). When resistance is felt, proceed slowly and with caution. This opens the valve and you can hear the nitrogen escaping and reducing pressure. Turn back the adjusting knob immediately, to avoid too much nitrogen being discharged.
- 4. After adjustment, remove the Adjuster knob, mount the end fittings and test the gas spring in your application. If necessary repeat the procedure.

If you use 2 gas springs in parallel, both gas springs should have the same force to avoid bending forces or side load on the application. If necessary return to ACE to refill both gas springs to the same (average) force. If too much nitrogen is discharged, the units can be returned to ACE for re-gassing.

The ACE gas spring refilling kit gives the ability to fill, or adjust pressure (or force) of a Gas Spring on site. You gain independence and flexibility. The refilling kit includes all the parts necessary to fill your ACE gas springs on site. Only the high pressure nitrogen bottle is not included in the kit.

Gas spring refilling kit with one filling bell. Please indicate the thread size.

Ordering Example: gas spring refilling kit GS-FK-19 additional filling bell GS-FA-M8

134

Available filling bells GS-FA-M3,5: GS- 8 GS-10 GS-12 GS-FA-M5: GS-15 GS-19 GS-FA-M8: GS-22 GZ- 19 GS-FA-M10: GS-28 GZ-28 GS-FA-M14: GS-40

Calculation

To obtain the ideal selection to give the optimum operation for a gas spring it is important to identify the following points:

- gas spring size
- required gas spring stroke
- mounting points on flap and frame
- extended length of the gas spring
- required extension force
- hand forces throughout the complete movement on the flap

With our **free calculation service** you can eliminate the time-consuming calculation and fax us your details. Just complete the information shown on the calculation formulae page number 136. Please attach a sketch of your application (a simple hand sketch is sufficient) in side view. Our application engineers will determine the optimum mounting points and calculate the ideal situation to satisfy your requirements.

You will receive a quotation showing the opening and closing forces and our recommended mounting points to suit your application.

Safety Instructions

Gas springs are filled with pure nitrogen gas. Nitrogen is an inert gas that does not burn or explode and is not poisonous. Please note!: the internal pressure of gas springs can be up to 300 bar. Do not attempt to open or modify them.

ACE gas springs will operate in surrounding temperatures from -20 °C to +80 °C. We can equip our springs with special seals to withstand temperatures as low as -45 °C or as high as +200 °C. Gas springs should not be placed over heat or in open fire!

Disposal/Recycling:

Gas Springs consist mostly of metal and the metal could be recycled, but first the gas pressure must be removed. Please ask for our disposal recommendations which advise how to depressurize the gas springs and make them safe to recycle.

All gas springs are marked with the part number, the production date and a warning sign "Do not open high pressure". We are not responsible for any damages of any kind that arises due to goods that are not marked accordingly.

Gas springs should be installed with the piston rod downwards. This position ensures best damping quality. Only ACE gas springs include an integrated grease chamber which allows for alternative mounting opportunities.

Gas springs should not be exposed to tilting or side load forces during operation or whilst static (this can cause bending of the piston rod or early wear). Gas springs are maintenance-free. Do not grease or oil the piston rod.

The piston rod must not be painted and should be protected against shocks, scratches and dirt. The cylinder should not be deformed as such damage would destroy the sealing system.

ACE gas springs can be stored in any position. Pressure lost through long storage is not to be expected. There are no known negative values, but there may be a sticking effect the first time you compress a spring. This may require a higher initial force to operate the gas spring for the first time (initial breakaway force).

The tolerance for the installation length is generally deemed to be ± 2 mm. If very high demands are placed on durability and stability, please avoid the combination of small diameter + long stroke + high force.

The filling tolerance is -20 N to 40 N or 5 % to 7 %.

Calculation Formulae

Case 1 (e.g. Flap)

Case 2 (e.g. Hood) 90° Y+ Starting Angle (-12° = 348°) 180° 0/360° χχ+ YL Ύс RM RH 270° Y-In this example: Starting Angle = 348° Opening Angle = +80°

Push type 🗌

Pull type

Case 2 (with attached sketch only)

Case 1

13

Gas Spring Fixing points

The fixed point X_F and Y_F of the frame and the moving point X_L and Y_L of the flap are critical for the optimum operation. Therefore please attach a sketch of your application on separate paper (a few lines with their dimensions are sufficient)!

Moving mass		m		kg
No. of gas springs in parallel		n		pcs
Number of movements				/day
Ambient temperature		Т		°C
(if not shown by the sketch)				
Radius of centre of gravity		R_M		mm
Radius of hand force		R_{H}		mm
Starting angle (0° to 360°)				. °
Opening angle (-360° to +360	°)	α		
(- = downwards, + = upwards)				
Dimensions of the flap:	thickness			mm
Distance between flap and pivot:				
Upper side $O_K = _$ mm,	Lower side	U _K =	=	mm

Desired Mounting Fittings

The end fittings are interchangeable.

e.g.: -CE C = Angle Ball Joint, E = Swivel Eye

Comments	Requirement per year
	Machine type/reference
6 Sender	
Co	Dept
Address	Name
	Telephone Fax
Internet	E-Mail

Please copy, complete and fax to ACE: Fax +49-(0)2173-9226-89

Industrial Gas Springs GS-8 (Push Type)

Extension Forces 10 N to 100 N (when Piston Rod Compressed up to 130 N)

accessories see page 155.

Industrial Gas Springs GS-10 (Push Type)

Extension Forces 10 N to 100 N (when Piston Rod Compressed up to 120 N)

Industrial Gas Springs GS-12 (Push Type)

Extension Forces 10 N to 180 N (when Piston Rod Compressed up to 225 N)

Industrial Gas Springs GS-15 (Push Type)

Extension Forces 20 N to 400 N (when Piston Rod Compressed up to 500 N)

Industrial Gas Springs GS-19 (Push Type)

Extension Forces 50 N to 700 N (when Piston Rod Compressed up to 995 N)

Industrial Gas Springs GS-22 (Push Type)

Extension Forces 80 N to 1 300 N (when Piston Rod Compressed up to 1 950 N)

Industrial Gas Springs GS-28 (Push Type)

Extension Forces 150 N to 2500 N (when Piston Rod Compressed up to 4875 N)

ssue 4.2009 Specifications subject to change

Large Industrial Gas Springs GS-40 (Push Type)

Extension Forces 500 N to 5000 N (when Piston Rod Compressed up to 7650 N)

Large Industrial Gas Springs GS-70 (Push Type)

Extension Forces 2000 N to 13000 N (when Piston Rod Compressed up to 16250 N)

Traction Gas Springs GZ-19 (Pull Type)

Traction (Pull) Forces 30 N to 300 N (when Piston Rod Extended up to 330 N)

Traction Gas Springs GZ-28 (Pull Type)

Traction (Pull) Forces 150 N to 1 200 N (when Piston Rod Extended up to 1 440 N)

Gas springs in AISI 303/304 (V2A) stainless steel

As well as its very extensive range of standard adjustable force gas springs ACE can offer a wide range of stainless steel gas springs. These are manufactured in AISI 303/304 (V2A) stainless steel in sizes from Ø 15 mm to Ø 70 mm outer body diameter.

Furthermore this high quality stainless finish is available in all stroke lengths and force levels on request. The associated end fittings such as clevis forks, ball joints and swivel eyes etc. are also available in 304 (V2A) stainless for all model sizes. Industrial gas springs are universally applicable wherever you have lifting and lowering. Through their unique properties of being **corrosion resistant and nonmagnetic** these stainless springs are the preferred choice for medical, pharmaceutical, food industry and marine applications.

Front Bearing in Brass

MA8-VA swivel assembly to suit flat eye end fittings A8 and A10 in stainless steel

Operating fluid: Nitrogen gas and oil (for end damping) **Material:** Piston rod, body and end fittings: Material 1.4301/1.4305.

Mounting: In any position

Advice: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

Operating temperature range: -20 °C to 80 °C

On request: Without damping, increased end position damping, special force curves, special lengths, alternative end fittings. Gas springs and accessories: Material 1.4404/1.4571, AISI 316L/316Ti (V4A).

ssue 4.2009 Specifications subject to change

Industrial Gas Springs GS-15-VA (Push Type)

Extension Forces 40 N to 400 N (when Piston Rod Compressed up to 490 N)

Industrial Gas Springs GS-19-VA (Push Type)

Extension Forces 50 N to 700 N (when Piston Rod Compressed up to 910 N)

Industrial Gas Springs GS-22-VA (Push Type)

Extension Forces 100 N to 1 200 N (when Piston Rod Compressed up to 1 560 N)

Industrial Gas Springs GS-28-VA (Push Type)

Extension Forces 150 N to 2500 N (when Piston Rod Compressed up to 3800 N)

Large Industrial Gas Springs GS-40-VA (Push Type)

Extension Forces 500 N to 5000 N (when Piston Rod Compressed up to 7000 N)

ssue 4.2009 Specifications subject to change

Gas Spring and Hydraulic Damper Accessories

End Fittings and Mounting Brackets

Just drill 4 holes – ACE does all the rest!

By taking advantage of the very extensive range of ACE end fittings and mounting brackets you can easily and simply install our gas springs and hydraulic dampers. You profit from the variety of DIN Standard end fittings such as swivel eyes, clevis forks, angle ball joints, inline ball joints, and complementary ball sockets. ACE also offers eye fittings made of wear resistant steel to meet the higher specification requirements found in industrial applications. With over 30 different types available these newly developed mounting accessories provide an extensive range of combinations for optimum installations.

With the ACE selection programme you can choose not only your gas springs but also the ideal end fittings and mounting brackets for your individual application example.

The complete range of accessories are also available as individual components.

Interchangeable Combinable

The wide range of mounting brackets available

¹ Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

Mounting Accessories for Gas Springs and Dampers

156

GS-19, GS-22, GZ-19, HB-22, HB-28, HBS-28, DVC-32

¹ Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

¹ Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

Accessories M24x2 GS-70, HB-70, HBS-70

¹ Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

Industrial Gas Springs

Application Examples

Doors open and close safely

ACE industrial gas springs make opening and closing doors of rescue helicopters easier.

The maintenance-free, sealed systems are installed in the access doors of helicopters of the type EC 135. There, they allow the crew to enter or exit the helicopter quickly, thus contributing to enhanced safety.

The **GS-19-300-CC** gas springs provide a defined retraction speed and secure engagement of the door lock. The integrated end position damper allows gentle closing of the door and saves wear and tear on the valuable, lightweight material.

Industrial gas springs: For safe entry and exit

ACE industrial gas springs prevent injuries during maintenance work on harvesting machines.

The blades of corn pickers are arranged under plastic hoods, which assure proper material flow within the machine. For maintenance purposes, the hoods, weighing about 7 kg, must be lifted up. To protect maintenance personnel from injury by falling hoods, they are kept in the open position by industrial gas springs of the type **GS-22-250-DD**.

Another advantage they offer is their stability under rough operating conditions due to their ceramic hardness structure on the piston rod and the powder-coated housing.

Enhanced protection: Industrial gas springs secure heavy hoods

158

Protection under the hood

This Service is Free of Charge

FAX REQUEST

Company
lame
Department/Position
Street/PO Box
Postcode/City
Country
elephone/Fax
-Mail

YES! We are interested in:

further copy of the new ACE Catalogue.

the new ACE CAD-Library with selection programme on CD-Rom. 2D- and 3D-version (standard formats).

Training at our site.

Internet

Technical assistance at our site.

Latest CAD-library and selection programme online

Update for your earlier version via internet! www.acecontrols-int.com

Fax to +49-2173-9226-89

0

CAMOZZI NEUMATICA S.A. Prof. Dr. Pedro Chutro 3048 1437 Buenos Aires, Argentina Tel.: +54-11 49110816 Fax: +54-11 49124191 www.camozzi.com.ar

ARGENTINA

AUSTRALIA

IMI NORGREN LTD. 33 South Corporate Av. Rowville, Victoria 3178, Australia Tel.: +61-3 9213 0800 Fax: +61-3 9213 0898

AUSTRIA

ACE STOSSDÄMPFER GMBH Albert-Einstein-Straße 15, 40764 Langenfeld

Germany Tel.: +49-2173-9226-4000 Fax: +49-2173-9226-29 www.ace-ace.de (Vertriebspartner auf Anfrage)

BELARUS

BIBUS (BY) COOO 8th Per. Ilyicha 13a, office 2.1 246013 Gomel, Belarus Tel.: +375-232 39 09 02 Fax: +375-232 37 10 01 www.bibus.by

BELGIUM

ACE STOSSDÄMPFER GMBH Albert-Einstein-Straße 15, 40764 Langenfeld

Germany Tel.: +32-(0)11-960736 Fax: +32-(0)11-960737 www.ace-ace.be (Vertriebspartner auf Anfrage)

BRAZIL

OBR EQUIPAMENTOS INDUSTRIAIS LTDA. Rua Piratuba, 1573, Bom Retiro Joinville-SC (South Brazil) CEP 89.222-365, Brazil Tel.: +55-0800 704 3698 / 47 3435 44 64 Fax: +55-47 3425 90 30 www.obr.com.br

BULGARIA

BIBUS BULGARIA LTD. Lulin Plaza, Office 3A, 5 Dobri Nemirov Str. 1324 Sofia, Bulgaria Tel.: +359-292 73 26 4 / -885 49 42 75 Fax: +359-292 73 26 4 www.bibus.bg

CANADA COWPER LTD.

677 7th Avenue, Lachine, Quebec H8S 3A1 Tel.: +1-514-637-6746 Fax: +1-514-637-5055

CHILE

TAYLOR AUTOMATIZACION S.A. A.V. Vicuna Mackenna, # 1589 Santiago, Chile Tel.: +56-25 55 15 16 Fax: +56-25 44 19 65 www.taylorautomatizacion.cl

DANYAO TRADING CO. LTD. Room 209, No. 1181, Xiuyan Rd., Kangqiao Nanhui County, Shanghai 201315, China Tel.: +86-21-6819-8501 Fax: +86-21-6819-8503 www.acedanyao.com

IMI NORGREN LTD. 6th Floor, Benson Tower, 74 Hung To Road Kwun Tong, Kowloon, Hong Kong Tel.: +852-24 92 76 08 Fax: +852-24 92 76 78

UNIVERSE TECHNOLOGY LTD. Flat E, 17/F., Mai On Ind. Bldg. 17 Kung Yip St., Kwai Chung, Hong Kong Tel.: +852-2619 0013 / +86-755 8376 1101 Fax: +852-2619 0273 / +86-755 8376 1106 www.utlhk.com

CROATIA

BIBUS ZAGREB D.O.O. Anina 91, 10000 Zagreb, Croatia Tel.: +385-1 3818 004 Fax: +385-1 3818 005 www.bibus.hr

CZECH REPUBLIC

BIBUS S.R.O. Videnska 125, 639 27 Brno Czech Republic Tel.: +420-547 125 300 Fax: +420-547 125 310 www.bibus.cz

DENMARK

AVN AUTOMATION A/S Bergsoesvej 14, 8600 Silkeborg, Denmark Tel.: +45-70 20 04 11 Fax: +45-86 80 55 88 www.avn.dk

NESTEPAINE OY Makituvantie 11, 01510 Vantaa, Finland Tel.: +358-20 765 165 Fax: +358-20 765 7666 www.nestepaine.fi

FRANCE

BIBUS FRANCE ZI du Chapotin, 69970 Chaponnay, France Tel.: +33-4 78 96 80 00 Fax: +33-4 78 96 80 01 www.bibusfrance.fr

PNEUMATEC INDUSTRIAL AUTOMATION SYSTEMS 91 Spirou Patsi Street, Athens 11855, Greece Tel.: +302-1 03412101 / 3413930 Fax: +302-1 03413930

ACE companies see back page

BIBUS KFT. 1103 Budapest, Ujhegyi ut 2, Hungary Tel.: +36-1265 27 33 Fax: +36-1264 89 00 www.bibus.hu

MACO CORPORATION (INDIA) PVT. LTD. 2/5 Sarat Bose Road, "Sukh Sagar" 7th Floor 7A, Kolkata - 700020, Calcutta, India Tel.: +91-33 24 75 83 71 / 85 00 / 24 54 32 81 Fax: +91-33 24 54 32 69 www.macocorporation.com

3D EQUIPMENT

319 Maheshwari Chambers, 6-3-650 Somajiguda Hyderabad 500082, India Tel.: +91-40 66668109 Fax: +91-40 66668109

IRISH PNEUMATIC SERVICES LTD. Unit 2014, City West Business Campus Saggart, Co. Dublin, Ireland Tel.: +353-14 66 02 00 Fax: +353-14 66 01 58 www.irishpneumatic.com

ILAN & GAVISH AUTOMATION SERVICE LTD. 24, Shenkar Street, Qiryat-arie 49513 PO Box 10118, Petha-Tiqva 49001, Israel Tel.: +972-39 22 18 24 Fax: +972-39 24 07 61 www.ilan-gavish.co.il

Via Chambery 93/107V, 10142 Torino, Italy Tel.: +39-011-70 00 53 / 70 02 32 Fax: +39-011-70 01 41 www.rti-to.it

ATAFAWOK TRADING EST. PO Box 921797, Amman 11192, Jordan Tel.: +962-64 02 38 73 Fax: +962-65 92 63 25

KOREA SEOWON CORPORATION 1001 IIsan Technotown, 1141-1 Beksuk-Dong IIsandong-Gu, Goyang City Gyunggi-Do, 410-722, South Korea Tel.: +82-31 906 1100 Fax: +82-31 906 1101 www.seowoncorp.com

LUXEMBOURG

ACE STOSSDÄMPFER GMBH Albert-Einstein-Straße 15, 40764 Langenfeld Germany Tel.: +32-(0)11-960736 Fax: +32-(0)11-960737 www.ace-ace.be (Vertriebspartner auf Anfrage)

Worldwide

PARKER ORIGA SDN BHD 10 & 12, Lorong IKS Juru 3, Juru 14100 Simpang Ampat, Penang, Malaysia Tel.: +60-(0)4 508 1011 Fax: +60-(0)4 508 2122 www.parker-origa.com

Tomas Alba Edison 3116 Fraccionamiento Industrial Monterrey, N.L. 64440 Mexico Tel.: +52-81 8000 2000 Fax: +52-81 8000 2001 www.kopar.com.mx

NETHERLANDS

ACE STOSSDÄMPFER GMBH Albert-Einstein-Straße 15, 40764 Langenfeld Germany Tel.: +31-(0)165-714455 Fax: +31-(0)165-714456

www.ace-ace.nl (Vertriebspartner auf Anfrage)

NORGREN LTD. 3-5 Walls Road, PO Box 12-893, Penrose Auckland 1642 Tel.: +64-9 579 0189 Fax: +64-9 526 3399

NEW ZEALAND

NORWAY

OILTECH AS. Dynamitveien 23, Postboks 133, 1401 Ski Norway Tel.: +47-64 91 11 80 Fax: +47-64 91 11 81 www.oiltech.no

HYDNET AB Turebergsvagen 5, 191 47 Sollentuna Sweden Tel.: +46-8 59 470 470 Fax: +46-8 59 470 479 www.hydnet.se

PAKISTAN (

J.J. HYDRAULICS & PNEUMATICS Hotel Metropole Bldg., Room 127, 1st Floor Club Road, Karachi, Pakistan 75520 Tel.: +92-2 15 66 10 63 Fax: +92-2 15 66 10 65

POLAND

BIBUS MENOS SP. Z.O.O. ul. Spadochroniarzy 18, 80-298 Gdańsk Poland Tel.: +48-58 660 95 70 Fax: +48-58 661 71 32 www.bibusmenos.pl

PORTUGAL

AIRCONTROL INDUSTRIAL S.L. Paseo Sarroeta 4 20014 Donostia-San Sebastian, Spain Tel.: +34-943 44 50 80 Fax: +34-943 44 51 53 www.aircontrol.es

PUERTO RICO

P & C COMPANY PO Box 120, Canovanas Puerto Rico 00729 Tel.: +1787-7 68 50 33 Fax: +1787-7 50 68 20

ROMANIA

BIBUS SES S.R.L. Pestalozzi 22, 300155 Timisoara Romania Tel.: +40-256 200 500 Fax: +40-256 220 666 www.bibus.ro

RUSSIA

BIBUS 0.0.0. Izmailovsky prospect 2, letter A 190005 St. Petersburg, Russia Tel.: +7-812 251 62 71 Fax: +7-812 251 90 14 www.bibus.ru

Lublinskaya street 42, office 500 109387 Moskow, Russia Tel. +7-495 748 43 57 Fax +7-495 748 16 42 www.bibus.ru

SINGAPORE

PARKER ORIGA PTE. LTD. Block 5012 Ang Mo Kio Avenue 5#05-01 TECHplace II, Singapore 569876 Tel.: +65-64 83 29 59 Fax: +65-64 83 29 79 www.parker-origa.com

NORGREN PTE. LTD. 16 Tuas Street, Singapore 638453 Tel.: +65-68 62 18 11 Fax: +65-68 62 19 17 www.norgren.com

SLOVAKIA

BIBUS SK S.R.O. Trnavska cesta, 94901 Nitra Slovakia Tel.: +421-37 7777 950 Fax: +421-37 7777 969 www.bibus.sk

SLOVENIA

INOTEH D.O.O. K Zeleznici 7, 2345 Bistrica ob Dravi Slovenia Tel.: +386-02 665 1131 Fax: +386-02 665 2081 www.inoteh.si

ACE companies see back page

SOUTH AFRICA ISANDO PNEUMATICS (PTY) LTD. 1, Skietlood Street, Isando ext. 3 PO Box 441, Isando 1600 South Africa Tel.: +27-11 974-5176 Fax: +27-11 974-6137 www.ipneumatics.co.za

SPAIN

AIRCONTROL INDUSTRIAL S.L. Paseo Sarroeta 4 20014 Donostia-San Sebastian, Spain Tel.: +34-943 44 50 80 Fax: +34-943 44 51 53 www.aircontrol.es

SWEDEN

HYDNET AB Turebergsvagen 5, 191 47 Sollentuna Sweden Tel.: +46-8 59 470 470 Fax: +46-8 59 470 479 www.hydnet.se

Allmendstrasse 26, 8320 Fehraltorf Switzerland Tel.: +41-44-877 50 11 Fax: +41-44-877 58 51 www.bibus.ch

TAIWAN

DANYAO TRADING CO. LTD. 7F, NO. 19, Chung-Cheng Road Hsin-Chuang City, 242 Taipei County, Taiwan Tel.: +886-2 22 76 82 00 Fax: +886-2 22 76 75 73 www.acedanyao.com

THAILAND

B-TAC AUTOMATION LTD. PART. 115 Soi Sukhumvit 62/1 Sukhumvit RD. Bangjak Bangkok 10260 Thailand Tel.: +66-2-332 5555 Fax: +66-2-332 9988

TURKEY

T.M.G. PNEUMATIC & HYDRAULIC LTD. Necatibey Cad No. 44/2, 34420 Karakoy Turkey Tel.: +90-21 22 93 82 00

Fax: +90-21 22 49 88 34 www.tmg.com.tr

UKRAINE

BIBUS UKRAINE TOV Mashinobudivnykiv Str., 5A Chabany, 08162 Kiev Region Ukraine Tel.: +380-44 545 44 04 Fax: +380-44 545 54 83 www.bibus.com.ua

Companies

GERMANY

ACE STOSSDÄMPFER GMBH Albert-Einstein-Straße 15 40764 Langenfeld, Germany Tel.: +49-2173-9226-10 Fax: +49-2173-9226-19 www.ace-ace.de

GREAT BRITAIN ACE CONTROLS INTERNATIONAL Unit 404 Easter Park, Haydock Lane Haydock, WA11 9TH, U.K. Tel.: +44-(0)1942 727440 Fax: +44-(0)1942 717273 www.ace-controls.co.uk

INDIA ACE AUTOMATION CONTROL EQUIPMENT PVT. LTD. Kaydon House, 2/396 A Mookambigai Nagar Kattuppakkam, lyyapanthangal Chennai - 600 056, India Tel.: +91-44 24768484 Fax: +91-44 24766811 / 911

JAPAN

ACE CONTROLS JAPAN L.L.C. Room 31 Tanaka Bldg., 2-9-6 Kanda-Tacho Chiyoda-Ku, Tokyo 101-0046, Japan Tel.: +81-3 52 97 25 10 Fax: +81-3 52 97 25 17

ACE CONTROLS INTERNATIONAL INC. PO Box 71, Farmington Michigan 48024, USA (and in all states) Tel.: +1-248-476-0213 Fax: +1-248-476-2470 www.acecontrols.com

Distributors in other countries see pages 162 and 163.

